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Abstract

According to existing PDG information, the branching ratio for ψ(2s) → π+π− is equal to

(8 ± 5) × 10−5 [1]. Recently experimental groups [2, 3, 4] have reported two different values for

this decay namely (0.8± 0.8± 0.2)× 10−5, 0.84± 0.55+0.16
−0.35× 10−5 and 1.8× 10−5. In this paper it

is attempted to study ψ-decay process theoretically via Feynman diagrams and it was concluded

that the only effective way that ψ can decay into π+ and π− mesons is via one photon emission

in an electromagnetic process. Such conclusion is based upon the fact that color conservation is

violated in one-gluon mechanism and charge conjugation is violated in two-gluon mechanism and

G-parity and isospin is violated in three-gluon mechanism. By presenting the Feynman diagram,

the branching ratio of ψ-decay is calculated. The obtained value from our calculations is in good

agreement with the recently reported experimental value.
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I. INTRODUCTION

The bound state of a heavy non relativistic quark and its anti quark is called quarkoniom.

Therefore the bound state of a charm and anti-charm form charmonium. The charmonium

spectrum is denoted by n2S+1LJ in which n = 1, 2, · · · is the principal quantum number and

L = S, P, D, · · · is the orbital angular momentum, S is the total spin and J is the total

angular momentum. Parity and charge conjugation parity are defined as:

P = (−1)L+1, C = (−1)L+S. (1)

If Ĉ is charge conjugation operator then:

Ĉ|M, p, J, λ; B,Q, Le, Nµ >= ηc|M, p, J, λ;−B,−Q,−Le,−Nµ >, (2)

where the symbols in the ket stand respectively for mass, momentum, angular momentum

quantum number, helicity, baryon number, charge, lepton and muon numbers. It is further

assumed that Ĉ operator commutes with both strong and electromagnetic Hamiltonian. In

other words Ĉ is a symmetry operator for strong and electromagnetic interactions [5].

Isospin and G-parity are also used to specify charmonium state. For example for ψ(2s)

or J/ψ we write JG(JPC) = 0−(1−−).

The isospin group play a significant role in particle strong interactions. let us consider

the QCD lagrangian density:

L =
N∑

f=1

ψ̄f (iγ
µDµ −mf )ψf − 1

4
F j

µνF
µν
j , (3)

Dµ = ∂µ +
i

2
gλlA

l
µ, (4)

F j
µν = ∂µA

j
ν − ∂νA

j
µ − gfjklA

k
µA

l
ν , (5)

where f is for flavor index, N is the number of flavor, g is the gauge coupling constant, Al
µ

is the space-time component of the lth gluon vector potential, λl are the eight Gell-Mann

matrices and fjkl are the SU(3) group structure constants. If the mass difference of quark

could be ignored, then the given lagrangian is invariant under ψj = Ujkψk , where jk are

flavor indices and Ujk is a unitary matrix; for the (u, d, s) quarks this implies approximate

flavor SU(3) symmetry, and isospin invariance for the lightest quarks (u, d) [6]. In strong

interactions isospin conservation is assumed but the mass difference of light quarks u and d
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is considered to be the cause of isospin non conservation in strong interactions [7]. Therefore

as has been known, the strong interaction amplitude is reduced by (m0
u −m0

d)/Q factor due

to isospin break down [8], where Q is a proper energy scale in strong interaction.

G-parity, as a transformation in isospin space is an internal quantum number, which

is useful in explaining some processes such as ω, ρ → ππ or πππ , by inverting the unit

vectors in isospin space. The internal symmetry is expressed in terms of G-parity; therefore

is conserved in strong interactions [9]. Each meson possess either positive or negative G-

parity, therefore it can decay into other meson combinations that have an overall positive

or negative G-parity. The concept of isospin and G-parity will be used in ψ(2s) → π+π−

process in the next argument.

A. Charmonium transitions

Stability for charmonium means that cc̄ can be explained by experimental based OZI-

rule, that has also been accepted on the basis of QCD, state that [10,11,12]: The quarks

contained in the incoming particles are distributed over the particles in the final state of the

reaction. In other words this rule state that a continuous quark diagram is more probable

to occur than a discontinuous one .

The decay of a spin-1 meson such as ψ(2s) in strong interaction via OZI-rule breaking

mode by quark-antiquark annihilation and 3 gluon production is explained. In ψ(2s) →
π+π− decay the process proceed via OZI-rule breaking mode because pion does not contain

quark c. In a diagram such as in Fig.1 Up, the initial and final states, are connected by one

gluon exchange; but due to non conservation of color does not occur. Two gluon exchange

is possible with proper choice of color but is not likely due to charge conjugation parity

violation for ψ(2s) with JPC = 1−−. Therefore, the simplest possible case for ψ(2s) decay

in strong mode is via three gluon exchange. Each virtual gluon corresponds to a αs factor

in Feynman diagrams. So for 3 gluon exchange a factor of α3
s appears. In energy range

of nearly 3.5 GeV (Mψ(2s) ' 3.5GeV) the value of αs = 0.2 . As energy increases, αs

decreases continuously. Therefore QCD help us to understand this suppression mechanism

(in OZI-rule breaking decays). The charmonium decay mechanisms include annihilation

processes, radiative transitions and hadronic transitions. Here we study the annihilation

and the radiative transition modes. Therefore a charmonium in state n3S1 can decay via
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3 gluon or 2 gluon and one photon or one photon or 3 photon in to a psudoscalar meson

and the corresponding anti-meson. The decay by emitting one or 3 photon in QED and by

emitting 3 gluon in QCD interaction is shown in Fig. 1.

FIG. 1: Effective Feynman diagrams ψ decay to π+ and π−. Up: Three gluons contribution.

Down: One photon contribution.

Therefore the decay amplitude of ψ(2s) → π+π− is:

Aψ(2s) → Aγ + Aggg + Aγγγ + Aγgg. (6)

B. The dominant process in ψ(2s) → π+π− decay

Following reasons are stated to convince one that the dominant process in ψ(2s) → π+π−

decay is via one photon exchange:

I) In QED each virtual photon corresponds to a αE factor in Feynman diagrams. So for

3 photon exchange a factor of α3
E appears where the value of αE = 1/137. So it can safely

be ignored compare to one photon mode.

II) The decay rate of each of the above modes (Eq.(6)) including the QCD radiation

corrections are summarized in table 1.

Considering the perturbative QCD prediction, the comparison of Γggγ and Γggg up to 1st

order corrections indicate that:

Γggγ

Γggg

= (
51α

16αs

)(
1− 0.9αs

π

1 + 4.9αs

π

) ' 0.049, (7)

we have taken 0.25 < αs < 0.35 . Therefore on the basis of comparison Γggγ can be ignored

compare to three gluon exchange which is a strong one.
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TABLE I: Lowest order width expressions and the first order QCD corrections for cc̄ decay [13,14].

Process Width 1st order QCD correction

3S1 → e+e− 64πα2

9
|Ψ(0)|2
(2mc)2

1− 16αs
3π

3S1 → γγγ 4096α3(π2−9)
2187

|Ψ(0)|2
(2mc)2

1− 12.6αs
π

3S1 → ggg 160α3
s(π2−9)
81

|Ψ(0)|2
(2mc)2

1 + 4.9αs
π

3S1 → ggγ 512α2
sα(π2−9)
81

|Ψ(0)|2
(2mc)2

1− 0.9αs
π

III) As mentioned in previous section G-parity is considered to be conserved in strong

interactions where as in ψ(2s) → π+π− decay via three gluon which is a strong interaction,

G-parity conservation is violated ie:

ψ(0−) → π+(1−)π−(1−). (8)

Therefore this decay either does not occur or it happens with ignorable probability [15].

IV) Because the ψ(2s) → π+π− violates isospin , this purely hadronic process can pro-

ceed only via the isospin breaking parameter (md −mu)/Q which appears explicity in the

QCD Lagrangian[16]. Such an amplitude should therefore be suppressed by the small di-

mensionless factor (md −mu)/Q with Q some typical momentum in the problem. Rather

than relying on any explicit model dependent calculation, we present the following more

general argument by comparing with the SU(3) analog process ψ(2s) → KK̄. Since the

ψ(2s) → KK̄ decay violates SU(3) symmetry, because of the mass difference, the corre-

sponding purely hadronic decay amplitude A
(ggg)
π will have in this case the explicit small

SU(3) breaking suppression factor (ms −mu,d)/Q [17]. Consequently we expect that:

A
(ggg)
π

A
(ggg)
K

≈ md −mu

ms −mu,d

≈ 0.02− 0.03, (9)

where in the spirit of the Vafa-Witten theorem [16] we used the values of Lagrangian or
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”current” quark masses in estimating the above ratio. There are two KK̄ decay modes,

ψ(2s) → K0K0 (orK0
SK0

L ) and ψ(2s) → K+K− . The amplitude A
(ggg)
K is simply given in

the form of:

A
(ggg)
K ≈ Aψ(2s)→K0

SK0
L . (10)

The point is that the one photon and ggγ contributions to the ψ(2s) → K0
SK0

L decay

also vanish in the SU(3) limit due to canceling contribution of s, d̄ quarks of opposite charge

[18]. Multiplying Eq.(9) with the observed branching rate

Br(ψ(2s) → K0
SK0

L) = (5.2± 0.7)× 10−5, (11)

implies that

A(ggg)
π ≈ 0.06Aϕ(2s)→π+π− , (12)

so that it can be safely ignored [19].

V) In paper [20] the writer selects a quite different approach to show that the dominant

process in ψ(2s) and J/ψ decay to psudoscaler mesons occur only via one photon.

II. CALCULATION OF BRANCHING RATIO ψ(2S) → π+π−

The electromagnetic form factor of a spin-0 meson, studied with spacelike momentum

transfers (Fig. 2), is related to the following matrix element

< m(p2) | Jem
µ | m(p1) >= (p2 + p1)µF (Q2), (13)

where the electromagnetic current Jem
µ =

∑
f ef q̄fγµqf is expressed in terms of quarks

qf with flavor f and electric charge ef ; the spacelike momentum transfer is defined as

Q2 = −q2 = t = (p1− p2)
2, where p1 and p2 are the initial and final momenta of the meson,

respectively. The form factor F (Q2) measures the deviation of the meson from being a Dirac

point particle. The matrix element for timelike momentum transfers (Fig. 2),is defined as

< m(p1)m(p2) | Jem
µ | 0 >= (p1 − p2)µF (Q2). (14)

The timelike momentum transfer is defined as −Q2 = q2 = s = (p1 + p2)
2 , where s is the

center of mass energy square of the system, and p1 and p2 are the momenta of the meson

and the anti-meson, respectively. Electromagnetic form factors provide direct insight into
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the electromagnetic structure of a hadron, namely the distribution of charges and currents

in the hadrons as they couple with the photon. Since targets of unstable hadrons are not

possible, determination of their form factors for spacelike momentum transfers (positive Q2

) at large momentum transfers become impossible.

e- (p1)

e- (p2)

γ*(Q2)

h (k1)

h (k2)

F(Q2)

e- (p1) e+ (p2)

γ*(Q2)

h (k1) h (k2)

F(Q2)

FIG. 2: Feymann diagrams for studying the electromagnetic form factors. Left: Spacelike mo-

mentum transfer from electron scattering .The initial and final four-momenta of the electron are

p1 and p2, and the initial and final four-momenta of the hadron are k1 and k2, respectively. The

four-momentum of the virtual photon is defined as Q2 = −q2 = t = (p1 − p2)2. Right: Time-

like momentum transfer from e+e− annihilations. The initial four-momenta of the electron and

positron are p1 and p2, and the final four-momenta of the hadron and ’anti’hadron are k1 and k2,

respectively. The four-momentum of the virtual photon is defined as −Q2 = q2 = s = (p1 + p2)2 .

However, form factors of a meson (m) for timelike momentum transfers (negative Q2 )

can be measured by e+e− → m+m− reactions and is given as follow [4]:

σ0(e
+e− → m+m−) =

πα2β3
m

3s
|Fm(s)|2, (15)

where βm is the pesudoscalar meson (m = π, K) velocity (in terms of c) measured in the

laboratory system and given as βm =
√

1− (4m2
m)/s where mm stands for meson mass;

and Fm(s) is electromagnetic form factor and α is the QED coupling constant, respectively.

CLEO has recently measured σ0 for pion and at
√

s = 3.671 GeV the value of Fπ is reported

as [21]:

|Fπ(13.48GeV 2)| = 0.075± 0.008. (16)

Let us the ψ(2s) → π+π− decay process occur as in Fig. 3:

7



FIG. 3: Feynman diagram for ψ electromagnetic decay to π+ and π−.

Considering:

< π+(p1)π
−(p2) | Jem

µ | 0 >= (p1 − p2)µFπ(s), (17)

< 0 | Jem
µ | ψ(2s) >≡ √

αgεψ
µ , (18)

where α is the fine-structure constant, g is the coupling constant of the ψ to the virtual

photon , εψ
µ is the meson four vector polarization [22],and using the following relations

Σλε
λ
µ

∗
ελ

ν = −gµν +
pµpν

M2
ψ(2s)

, (19)

and in the approximation m2
e << M2

ψ :

Γψ→e+e− =
4πα2

3
g2Mψ (20)

,where the decay Γψ(2s)→e+e− is used to obtain g [23], now by doing calculation in a frame

which coincide with the ψ meson, the following relation is obtained

Γ(ψ(2s) → π+π−)

Γ(ψ(2s) → e+e−)
= 2F 2

π (M2
ψ(2s))(

p◦◦
Mψ(2s)

)3, (21)

where

p◦◦ ≡
√

M2
ψ(2s) − 4m2

π

4
(22)

and p◦◦ has the value of 1.838.

Considering the value of Fπ ( Eq.(16)) and putting the value of Γ(ψ(2s) → e+e−) from

PDG [1] the total value of Γ(ψ(2s) → π+π−) is calculated to be

Γ(ψ(2s) → π+π−) = 1.03× 10−5, (23)

which is in an excellent agreement with the recent published data.
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III. CONCLUDING REMARKS

The decay mode of ψ(2s) → π+π− is investigated. It is found that the dominant mode of

decay is one photon exchange via electromagnetic interaction. Using the recently measured

form factor by CLEO, the corresponding branching ratio is calculated. Our finding for

branching ratio is a factor ∼ 8 smaller than in the PDG [1] and is in good agreement with

the most resent published value given in references [2,3,4].
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