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Abstract

We analyze the rare semileptonic Bs → (η, η′)l+l−, (l = e, µ, τ) and Bs → (η, η′)νν̄ transitions

probing the s̄s content of the η and η′ mesons via three–point QCD sum rules. We calculate

responsible form factors for these transitions in full theory. Using the obtained form factors, we

also estimate the related branching fractions and longitudinal lepton polarization asymmetries.

Our results are in a good consistency with the predictions of the other existing nonperturbative

approaches.
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I. INTRODUCTION

Among B mesons, the Bs has been received special attention, since experimentally it

is expected that an abundant number of Bs will be produced at LHCb. This will provide

possibility to study properties of the this meson and its various decay channels. The first

evidence for Bs production at the Υ(5S) peak was found by the CLEO collaboration [1,

2]. Recently, the Belle Collaboration measured the branching ratios of the Bs → J/ψφ

transition as well as the Bs → J/ψη decay via the η → γγ and η → π+π0π− channels to

reconstruct the η meson [3].

Semileptonic decays of the Bs to the η and η
′, induced by the rare flavor changing neutral

current (FCNC) transition of b→ sl+l− and b→ sνν̄ are crucial framework to restrict the

SM parameters. They can provide possibility to extract the elements of the Cabbibo-

Kobayashi-Maskawa (CKM) matrix and search for origin of the CP and T violations. As

these transitions occur at the lowest order through one-loop penguin diagrams, they are

good context to search for new physics effects beyond the SM. Looking for supersymmetric

particles [4], light dark matter [5] and fourth generation of quarks is possible via these

transitions. These transitions are also useful to study structures of the η and η′ mesons.

In the present work, we analyze the semileptonic Bs → (η, η′)l+l−/νν̄ decays considering

also the s̄s content of the η and η′ mesons in the framework of the three point QCD sum

rules. Here, we consider also the mixing between the η and η′ states with a single mixing

angle [6, 7] as:

|η〉 = cos ϕ|ηq〉 − sinϕ|ηs〉

|η′〉 = sinϕ|ηq〉+ cosϕ|ηs〉 . (1)

where, in the quark favor (QF) basis (for more details see for instance [8, 9]),

|ηq〉 =
1√
2

(

|ūu〉+ |d̄d〉
)

,

|ηs〉 = |s̄s〉 . (2)

The decay constants of q̄q and s̄s parts are defined in terms of the pion decay constant as

[6]:

fq = (1.02± 0.02)fπ, fs = (1.34± 0.06)fπ. (3)
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We will use the mixing angle ϕ = (41.5± 0.3stat ± 0.7syst ± 0.6th)
◦ [10], which has recently

been obtained by the KLOE Collaboration in QF basis via measuring the ratio
Γ(φ→ η′γ)

Γ(φ→ ηγ)
.

In the QF basis with the single mixing angle, the form factors of Bs → η(η′) transitions are

defined in terms of the form factors Bs → ηs as:

f
Bs→η(η′)
i = − sinϕ (cosϕ) fBs→ηs

i , (4)

and their branching fractions are also related to the branching ratio of Bs → ηs as follows:

BR
{

Bs → η(η′)l+l−
}

= sin2 ϕ
(

cos2 ϕ
)

BR
{

Bs → ηsl
+l−

}

. (5)

The paper is organized as follows: sum rules for form factors responsible for considered

transitions are obtained in Section II. Section III is devoted to the numerical analysis of

the form factors, branching ratios and longitudinal lepton polarization asymmetries as well

as our discussions. In this section, we also compare the obtained results with the existing

predictions of the other non-perturbative approaches.

II. QCD SUM RULES FOR TRANSITION FORM FACTORS

As we previously mentioned, to calculate the form factors responsible for the rare semilep-

tonic Bs → (η, η′)l+l−, (l = e, µ, τ) and Bs → (η, η′)νν̄ decays, we need to calculate the

form factors of Bs → ηsl
+l−/νν̄. For this aim, we start with the following three-point cor-

relation function, which is constructed from the vacuum expectation value of time ordered

product T of interpolating fields of initial and final mesons and transition currents, JV and

JT , as follow:

ΠV,T
µ = i2

∫

d4xd4ye−ipxeip
′y〈0|T

{

Js5(y)J
V,T
µ (0)J†

Bs
(x)
}

|0〉 , (6)

where p and p′ are initial and final momentums, respectively, JBs
(x) = s̄(x)γ5b(x) and

Js5(y) = s̄(y)γ5s(y), are the interpolating currents of the Bs and ηs states and JVµ (0) =

s̄(0)γµb(0) and JTµ (0) = s̄(0)σµνq
νb(0) are the vector and tensor transition currents ex-

tracted from the effective Hamiltonian responsible for Bs → ηsl
+l−/νν̄ decays. At quark

level, these transitions are governed by b → sl+l− and b → sνν̄ via penguin and box dia-

grams (see Fig. (1)). The corresponding effective Hamiltonian is presented in terms of the

Wilson coefficients, Ceff
7 , Ceff

9 and C10 as:
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FIG. 1: Diagrams responsible for the Bs → (η, η′)l+l−/νν̄ transitions.

Heff =
GFα

2
√
2π
VtbV

∗
ts

[

Ceff
9 s̄γµ(1− γ5)b ℓ̄γµℓ+ C10 s̄γµ(1− γ5)b ℓ̄γµγ5ℓ

− 2Ceff
7

mb

q2
s̄ iσµνq

ν(1 + γ5)b ℓ̄γµℓ

]

, (7)

where GF is the Fermi constant, α is the fine structure constant at Z mass scale, and Vij

are elements of the CKM matrix. For νν̄ case, only the term containing C10 is considered.

It should be mentioned that because of the parity conservations, the axial vector and

pseudotensor currents do not contribute to the pseudoscalar–pseudoscalar hadronic matrix

element, i.e.,

〈P (p′) | JAVµ = s̄γµγ5b | Bs(p)〉 = 0 ,

〈P (p′) | JPTµ = s̄ iσµνq
νγ5b | Bs(p)〉 = 0 , (8)

where, P stands for η(η′) meson.

From the general aspect of the QCD sum rules, we calculate the aforementioned correla-

tion function in two different ways. First, in the hadronic representation, it is calculated in

time-like region in terms of hadronic parameters called phenomenological or physical side.

Second, it is calculated in space-like region in terms of QCD degrees of freedom called the

QCD or theoretical side. The sum rules for the form factors can be obtained equating the

coefficient of the selected structures from these two representations of the same correlation

function through dispersion relation and applying double Borel transformation with respect

to the momentums of the initial and final states to suppress the contributions coming from

the higher states and continuum.
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In order to obtain the phenomenological representation of the correlation function given

in Eq. (6), two complete sets of intermediate states with the same quantum numbers as

the interpolating currents Jηs and JBs
are inserted to sufficient places. As a result of this

procedure, we obtain,

ΠV,T
µ (p2, p′2, q2) =

〈0 | Js5 | P (p′)〉〈P (p′) | JV,Tµ | Bs(p)〉〈Bs(p) | J†
Bs

| 0〉
(p′2 −m2

P )(p
2 −m2

Bs
)

+ · · · (9)

where · · · represents the contributions coming from the higher states and continuum. The

following matrix elements 〈0|JBs
|P 〉 and 〈0|Js5 |P 〉 are defined in terms of the leptonic decay

constant and four parameters hsP as:

〈0|JBs
|Bs〉 = −i fBs

m2
Bs

mb +ms

,

〈0|Js5 |P 〉 = −i h
s
P

2ms

. (10)

where correlating the hsP to fs and fq, the values h
s
η = −0.053 GeV 3 and hsη′ = 0.065 GeV 3

are obtained (for details see [6]). From Lorentz invariance and parity considerations, the

remaining matrix element, i.e., transition matrix element in Eq. (9) is parameterized in

terms of form factors in the following way:

〈P (p′) | JVµ | Bs(p)〉 = Pµf+(q2) + qµf−(q
2) ,

〈P (p′) | JTµ | Bs(p)〉 =
fT (q

2)

mBs
+mP

[

Pµq2 − qµ(m
2
Bs

−m2
P )
]

, (11)

where, f+(q
2), f−(q

2) and fT (q
2) are the transition form factors, which only depend on the

momentum transfer squared q2, Pµ = (p+ p′)µ and qµ = (p− p′)µ.

Using Eqs. (10) and (11) in Eq. (9), we obtain

ΠV
µ (p

2, p′2, q2) =
fBs

m2
Bs

2ms(mb +ms)

hsP
(m2

P − p′2)(m2
Bs

− p2)

[

f+(q
2)Pµ + f−(q

2)qµ
]

,

ΠT
µ (p

2, p′2, q2) =
fBs

m2
Bs

2ms(mb +ms)

hsP
(m2

P − p′2)(m2
Bs

− p2)

[

fT (q
2)

(mBs
+mP )

×
(

q2Pµ − (m2
Bs

−m2
P )qµ

)

]

. (12)

For extracting the sum rules for form factors f+(q
2) and f−(q

2), we choose the coefficients

of the structures Pµ and qµ from ΠV
µ (p

2, p′2, q2), respectively and the structure qµ from

ΠT
µ (p

2, p′2, q2) is considered to calculate the form factor fT (q
2). Therefore, the correlation
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functions are written in terms of the selected structures as:

ΠV
µ (p

2, p′2, q2)=Π+Pµ +Π−qµ ,

ΠT
µ (p

2, p′2, q2)=ΠT qµ . (13)

Now, we focus our attention to calculate the to calculate the QCD side of the correlation

function. This side is calculated at deep Euclidean space, where −p2 → ∞ and −p′2 → ∞
via operator product expansion (OPE). For this aim, we write each Πi function (coefficient

of each structure) in terms of the perturbative and non–perturbative parts as:

Πi = Πper
i +Πnon−per

i , (14)

where i stands for +, − and T . The perturbative part is written in terms of double

dispersion integral as:

Πper
i = − 1

(2π)2

∫

ds′
∫

ds
ρperi (s, s′, q2)

(s− p2)(s′ − p′2)
+ subtraction terms , (15)

where, the ρperi (s, s′, q2) are called spectral densities. To get the spectral densities, we need

to evaluate the bare loop diagrams in Fig. ( 1). Calculating these diagrams via the usual

Feynman integrals with the help of the Cutkosky rules, i.e. 1
p2−m2 → −2πδ(p2−m2), which

implies that all quarks are real, leads to the following spectral densities:

ρper+ (s, s′, q2) = I0Nc{∆+ s′ − 2m2
s + 2mbms + (E1 + E2)u} ,

ρper− (s, s′, q2) = I0Nc{−∆+ s′ + 2m2
s − 2mbms + (E1 − E2)u} ,

ρperT (s, s′, q2) = −I0Nc{∆(mb −ms) + s′(ms −mb) + 2mss+ 2[mb(E1 − E2)

+ms(E2 − E1 − 1)]s′ + (E1 − E2)(ms −mb)u} , (16)

where

I0(s, s
′, q2) =

1

4λ1/2(s, s′, q2)
,

λ(s, s′, q2) = s2 + s′2 + q4 − 2sq2 − 2s′q2 − 2ss′ ,

E1 =
1

λ(s, s′, q2)
[2s′∆− s′u] ,

E2 =
1

λ(s, s′, q2)
[2ss′ −∆u] ,

u = s+ s′ − q2 ,

∆ = s+m2
s −m2

b ,

(17)
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and Nc = 3 is the color factor.

For calculation of non–perturbative contributions in QCD side, the condensate terms

of OPE are considered. The condensate term of dimension 3 is related to contribution of

quark condensate. Fig .(2) shows quark–quark condensate diagrams of dimension 3. It

should be reminded that the quark condensate are considered only for light quarks and

the heavy quark condensate is suppressed by inverse powers of the heavy quark mass. The

b

s

s

5
( )

5 5 5 5s

b s

( )q
5 5 q

5
( ) ( )

s

s

(c) (d)

; ;

FIG. 2: Quark–quark condensate diagrams.

contribution of the diagram (c) in Fig .(2) is zero since applying double Borel transformation

with respect to the both variables p2 and p
′2
kills its contribution, because only one variable

appears in the denominator in this case. Therefore as dimension 3, we consider only diagram

(d) in Fig .(2). The dimension 4 operator in OPE is the gluon–gluon condensate. Our

calculations show that in this case, the gluon–gluon condensate contributions are very

small in comparison with the quark–quark and quark-gluon condensates contributions and

we can easily ignore their contributions. The next operator is dimension 5 quark–gluon

condensate. The diagrams corresponding to quark–gluon condensate are presented in Fig.

(3). Contributions of the diagrams (e) and (f) vanish with the same reason as for diagram

(c) in Fig .(2). Therefore, only diagrams (g) and (h) contribute to the non–perturbative

part of dimension 5. In QCD sum rule approach, the OPE is truncated at some finite

order such that Borel transformations play an important role in this cutting. Mainly, the

proper regions of the Borel parameters are adopted by demanding that in the truncated

OPE, the condensate term with the highest dimension constitutes a small fraction of the

total dispersion integral. In the next section, we will explain how these proper regions are

obtained. Hence, we will not consider the condensates with d ≥ 6 that play a minor role in

our calculations.
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FIG. 3: Quark–gluon condensate diagrams.

The explicit expressions of Πnon−per
i , are given in the Appendix–A.

The next step is to apply the double Borel transformations with respect to the p2(p2 →
M2

1 ) and p′2(p′2 → M2
2 ) on the phenomenological as well as the perturbative and non–

perturbative parts of the QCD side and equate the two representations. As a result, the

following sum rules for the form factors are derived:

f ′
i(q

2)=
(mb +ms)(2ms)

fBs
m2
Bs
hsP

em
2

Bs
/M2

1 em
2

P
/M2

2

×
{

− 1

4π2

∫ s′
0

2m2
s

ds′
∫ s0

sL
dsρperi (s, s′, q2)e−s/M

2

1 e−s
′/M2

2 + B̃Πnon−per
i (p2, p′2, q2)

}

,

(18)

where, f ′
+(q

2) = f+(q
2), f ′

−(q
2) = f−(q

2) and f ′
T (q

2) = −fT (q2)(mBs
−mP ). The s0 and s′0

are the continuum thresholds in initial and final channels, respectively and sL is the lower

limit of the integral over s. It is obtained as:

sL =
(m2

s + q2 −m2
b − s′)(m2

bs
′ − q2m2

s)

(m2
b − q2)(m2

s − s′)
. (19)
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Also the operator B̃ in Eq. (18) is defined as:

B̃ = Bp2(M2
1 )Bp′2(M

2
2 ) , (20)

where, M2
1 andM2

2 are Borel mass parameters. It should be also noted that to subtract the

contributions of the higher states and the continuum the quark–hadron duality assumption

is also used,

ρhigherstates(s, s′) = ρOPE(s, s′)θ(s− s0)θ(s
′ − s′0) . (21)

III. NUMERICAL ANALYSIS

We are now ready to present our numerical analysis of the form factors f+(q
2), f−(q

2) and

fT (q
2) and calculate branching fractions and longitudinal lepton polarization asymmetries.

In our numerical calculations, we use the following values for input parameters: ms =

0.13 GeV , mb = 4.8 GeV , mη = (547.51 ± 0.18) MeV , mη′ = (957.78 ± 0.14) MeV ,

mBs
= (5366.3±0.6)MeV [11], |VtbV ∗

ts| = 0.0385, Ceff
7 = −0.313, C9 = 4.344, C10 = −4.669

[12], fBs
= (209 ± 38) MeV [13], m2

0 = (0.8 ± 0.2) GeV 2, 〈ss̄〉 = (0.8 ± 0.2)〈uū〉 and

〈uū〉 = −(0.240± 0.010)3 GeV 3.

The sum rules for the form factors contain also four auxiliary parameters, namely Borel

mass squares, M2
1 and M2

2 and continuum thresholds, s0 and s0. These are not physical

quantities, so our results should be independent of them. The parameters s0 and s
′
0 are not

totally arbitrary but they are related to the energy of the first excited stateS with the same

quantum numbers as the interpolating currents. They are determined from the conditions

that guarantee the sum rules to have the best stability in the allowed M2
1 and M2

2 regions.

The value of continuum threshold s0 calculated from the two–point QCD sum rules are taken

to be s0 = (34.2±2) GeV 2 [14]. We use also the range, (mP+0.3)2 ≤ s′0 ≤ (mP+0.5)2 GeV 2

in P = η(η′) channel. The working regions for M2
1 and M2

2 are determined demanding that

not only the contributions of the higher states and continuum are effectively suppressed,

but contributions of the higher dimensional operators are also small. Both conditions are

satisfied in the regions, 12 GeV 2 ≤M2
1 ≤ 22 GeV 2 and 4 GeV 2 ≤M2

2 ≤ 10 GeV 2.

The dependence of the form factors f+, f− and fT onM2
1 andM2

2 for Bs → ηs transition

when mP = mη are shown in Fig. 4. The Fig. 5, also depicts the dependence of the same

9
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FIG. 4: The dependence of the form factors on M2
1 and M2

2 for Bs → ηs decay when mP = mη.

The solid, dashed and dashed-dotted lines correspond to the f+, f− and fT , respectively.
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FIG. 5: The dependence of the form factors on M2
1 and M2

2 for Bs → ηs decay when mP = mη′ .

The solid, dashed and dashed-dotted lines correspond to the f+, f− and fT , respectively.

form factors on Borel mass parameters for Bs → ηs decay when mP = mη′ . These figures

show a good stability of the form factors with respect to the Borel mass parameters in the

working regions. Using these regions for M2
1 and M2

2 , our numerical analysis shows that

the contribution of the non–perturbative part to the QCD side is about 21% of the total
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and the main contribution comes from the perturbative part.

Now, we proceed to present the q2 dependency of the form factors. Since the form factors

f±(q
2) and fT (q

2) are calculated in the space-like (q2 < 0) region, we should analytically

continue them to the time-like (q2 > 0) or physical region. Hence, we should change q2 to

−q2. As we previously mentioned, the form factors are truncated at approximately, 1 GeV

below the perturbative cut. Therefore, to extend our results to the full physical region,

we look for parametrization of the form factors in such a way that in the reliable region

the results of the parametrization coincide with the sum rules predictions. Our numerical

calculations show that the sufficient parametrization of the form factors with respect to q2

is:

fi(q
2) =

fi(0)

1 + αq̂ + βq̂2
, (22)

where q̂ = q2/m2
Bs
. The values of the parameters fi(0), α and β are given in the Table I

taking M2
1 = 12 GeV 2 and M2

2 = 5 GeV 2. This Table also contains the predictions of the

light-front quark model (LFQM).

Bs → ηs(P = η) Bs → ηs(P = η′)

Parameters This work LFQM[8] Parameters This work LFQM[8]

f+(0) 0.364 ± 0.120 0.291 f+(0) 0.337 ± 0.111 0.291

α −0.333 ± 0.107 −1.574 α −0.495 ± 0.158 −1.575

β −0.694 ± 0.222 0.751 β −0.820 ± 0.262 0.770

f−(0) −0.189 ± 0.062 −0.231 f−(0) −0.193 ± 0.064 −0.225

α −0.833 ± 0.267 −1.582 α −1.028 ± 0.329 −1.570

β −0.168 ± 0.054 0.825 β −0.048 ± 0.015 0.835

fT (0) −0.444 ± 0.147 −0.280 fT (0) −0.424 ± 0.140 −0.300

α −0.453 ± 0.145 −1.561 α −0.596 ± 0.191 −1.561

β −0.355 ± 0.114 0.782 β −0.381 ± 0.122 0.802

TABLE I: Parameters appearing in the fit function for form factors of Bs → ηs in two approaches.

The values of the form factors at q2 = 0 are also compared with the predictions of the

other nonperturbative approaches such as, LFQM and constituent quark model (CQM) in

Table II. The dependence of the form factors f+(q
2), f−(q

2) and fT (q
2) on q2 extracted
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Mode Form factors This work LFQM[8] LFQM[16] CQM [16]

f+(0) 0.364 ± 0.120 0.291 0.354 0.357

Bs → ηs(P = η) f−(0) −0.189 ± 0.062 -0.231 -0.360 -0.304

fT (0) −0.444 ± 0.147 -0.280 -0.369 -0.365

f+(0) 0.337 ± 0.111 0.291 0.354 0.357

Bs → ηs(P = η′) f−(0) −0.193 ± 0.064 -0.225 -0.324 -0.304

fT (0) −0.424 ± 0.140 -0.300 -0.404 -0.390

TABLE II: The form factors of the Bs → ηs decay for M2
1 = 12 GeV 2 and M2

2 = 5 GeV 2 at q2 = 0

in different approaches: this work (3PSR), light-front quark model (LFQM) and constituent quark

model (CQM).

from the fit function are given in Figs. (6) and (7) for the P = η and P = η′ cases,

respectively. These figures also contain the values of form factors obtained directly from

our sum rules in reliable region. These values coincide well with the values obtained from the

fit function below the perturbative cut. Therefore, the aforementioned fit parametrization

better describe our form factors. The form factors of Bs → η and Bs → η′ are obtained

using values in Table I and also Eq. (4).

Now, we would like to evaluate the branching ratios for the considered decays. Using

the parametrization of these transitions in terms of the form factors, we get [15]:

dΓ

dq2
(Bs → Pνν̄) =

A G2
F
|VtsV ∗

tb|2m3
Bs
α2

28π5

|Dν(xt)|2
sin4θW

φ3/2(1, r̂, ŝ)|f+(q2)|2 ,

dΓ

dq2

(

Bs → P l+l−
)

=
A G2

F
|VtsV ∗

tb|2m3
Bs
α2

3 · 29π5
vφ1/2(1, r̂, ŝ)

[(

1 +
2l̂

ŝ

)

φ(1, r̂, ŝ)α1 + 12 l̂β1

]

,

(23)

where A = sin2 ϕ for Bs → η and A = cos2 ϕ for Bs → η′ transitions. The r̂, ŝ, l̂, xt and

m̂b and the functions v, φ(1, r̂, ŝ), Dν(xt), α1 and β1 are defined as:

r̂ =
m2
P

m2
Bs

, ŝ =
q2

m2
Bs

, l̂ =
m2
l

m2
Bs

, xt =
m2
t

m2
W

, m̂b =
mb

mBs

,

v =

√

1− 4l̂

ŝ
,

12



φ(1, r̂, ŝ) = 1 + r̂2 + ŝ2 − 2r̂ − 2ŝ− 2r̂ŝ ,

Dν(xt) =
xt
8

(

2 + xt
xt − 1

+
3xt − 6

(xt − 1)2
lnxt

)

,

α1 =
∣

∣

∣

∣

Ceff
9 f+(q

2) +
2 m̂bC

eff
7 fT (q

2)

1 +
√
r̂

∣

∣

∣

∣

2

+ |C10f+(q
2)|2 ,

β1 = |C10|2
[(

1 + r̂ − ŝ

2

)

|f+(q2)|2 +
(

1− r̂
)

Re(f+(q
2)f ∗

−(q
2)) +

1

2
ŝ|f−(q2)|2

]

.(24)

Integrating Eq. (23) over q2 in the whole physical region and using the total mean lifetime

τBs
= (1.466± 0.059) ps [11], the branching ratios of the Bs → (η, η′)l+l−/νν̄ are obtained

as presented in Table III. In this Table, we show only the values obtained considering the

Mode This work LFQM[8] LFQM[16] CQM[16] set A[9] set B[9] set C[9]

Br(Bs → ηνν̄)× 106 1.35± 0.56 1.54 2.56(2.34) 2.38(2.17) 0.95 ± 0.2 2.2± 0.7 2.9± 1.5

Br(Bs → η′νν̄)× 106 1.33± 0.55 1.47 2.36(2.52) 2.23(2.38) 0.9± 0.2 1.9± 0.5 2.4± 1.3

Br(Bs → ηµ+µ−)× 107 2.30± 0.97 2.09 3.75(3.42) 3.42(3.12) 1.2± 0.3 2.6± 0.7 3.4± 1.8

Br(Bs → η′µ+µ−)× 107 2.24± 0.94 1.98 3.40(3.63) 3.19(3.41) 1.1± 0.3 2.2± 0.6 2.8± 1.5

Br(Bs → ητ+τ−)× 108 3.73± 1.56 5.14 7.33(6.70) 7.33(6.70) 3± 0.5 8± 1.5 10± 5.5

Br(Bs → η′τ+τ−)× 108 2.80± 1.18 2.86 4.66(5.00) 4.04(4.30) 1.55 ± 0.3 3.85 ± 0.75 4.7± 2.5

TABLE III: The branching ratios in different models corresponding to ϕ = 41.5◦. The values in

parentheses related to ϕ = 39.3◦.

short distance (SD) effects contributing to the Wilson coefficient Ceff
9 for charged lepton

case. The effective Wilson coefficient Ceff
9 including both the SD and long distance (LD)

effects is [12]:

Ceff
9 (s) = C9 + YSD(s) + YLD(s). (25)

The LD effect contributions are due to the J/ψ family. The explicit expressions of the

YSD(s) and YLD(s) can be found in [12] (see also [17]). Table III also includes a comparison

between our results and predictions of the other approaches including the LFQM, CQM

and other methods [9]. Note that, the results presented as [9] are not the results directly

obtained by analysis of the Bs → η(η′), but they have been found relating the form factors

of Bs → ηs to the form factors of B → K using the quark flavor scheme (see [9]). Hence,

13



the comparison of our results with the predictions of [9] is an approximate and for the exact

comparison, the form factors should be directly available. In this Table, the set A refers to

the values computed using short-distance QCD sum rules, set B shows the results obtained

by light-cone QCD sum rules and set C corresponds to the results calculated via light-cone

QCD sum rules within the Soft Collinear Effective Theory (SCET). From Table III, we see

a good consistency in order of magnitude between our results and predictions of the other

non-perturbative approaches. Here, we should also stress that the results obtained for the

electron are very close to the results of the muon and for this reason, we only present the

branching ratios for muon in our Tables.

In this part, we would like to present the branching ratios including LD effects. We

introduce some cuts around the resonances of J/ψ and ψ′ and study the following three

regions for muon:

I :
√

q2min ≤
√

q2 ≤ MJ/ψ − 0.20,

II : MJ/ψ + 0.04 ≤
√

q2 ≤ Mψ′ − 0.10,

III : Mψ′ + 0.02 ≤
√

q2 ≤ mBs
−mP . (26)

and for tau:

I :
√

q2min ≤
√
q2 ≤ Mψ′ − 0.02,

II : Mψ′ + 0.02 ≤
√
q2 ≤ mBs

−mP . (27)

where
√

q2min = 2ml. In Tables IV and V, we present the branching ratios for muon and

tau obtained using the regions shown in Eqs. (26) and (27), respectively. The errors

presented in Tables III, IV and V are due to uncertainties in determination of the auxiliary

parameters, errors in input parameters, systematic errors in QCD sum rules as well as

the errors associated to the following approximations used in the present work: a) the

form factors are calculated in the low q2 region and extrapolated to high q2 using the fit

parametrization in Eq. (22), b) the hadronic operators in the considered Hamiltonian can

receive sizable non-factorizable corrections and the corresponding matrix elements may

also be sensitive to the isosinglet content of the η and η′ mesons. We show the dependency

of the differential branching ratios on q2 (with and without LD effects for charged lepton

case) in Figs. (8)-(13).
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Mode I II III

Br(Bs → ηµ+µ−) (1.76 ± 0.72) × 10−7 (2.20 ± 0.90) × 10−8 (2.28 ± 0.93) × 10−8

Br(Bs → η′µ+µ−) (1.81 ± 0.74) × 10−7 (2.24 ± 0.92) × 10−8 (1.32 ± 0.54) × 10−8

TABLE IV: The branching ratios of the semileptonic Bs → (η, η′)µ+µ− decays including LD

effects.

Mode I II

Br(Bs → ητ+τ−) (0.40 ± 0.16) × 10−9 (3.16 ± 1.26) × 10−8

Br(Bs → η′τ+τ−) (0.43 ± 0.17) × 10−9 (2.27 ± 0.90) × 10−8

TABLE V: The branching ratios of the semileptonic Bs → (η, η′)τ+τ− decays including LD effects.

Finally, we want to calculate the longitudinal lepton polarization asymmetry for consid-

ered decays. It is given as [15]:

PL =
2v

(1 + 2l̂
ŝ
)φ(1, r̂, ŝ)α1 + 12l̂β1

Re

[

φ(1, r̂, ŝ)

(

Ceff
9 f+(q

2)− 2C7fT (q
2)

1 +
√
r̂

)

(C10f+(q
2))∗

]

,

(28)

where v, l̂, r̂, ŝ, φ(1, r̂, ŝ), α1 and β1 were defined before. The dependence of the longi-

tudinal lepton polarization asymmetries for the Bs → (η, η′)l+l− decays on the transferred

momentum square q2 with and without LD effects are plotted in Figs. 14 and 15.

As a result, the order of the obtained values for branching ratios as well as the longitudi-

nal lepton polarization asymmetries show a possibility to study the considered transitions

at LHC. Any experimental measurements on the presented quantities and those compar-

isons with the obtained results can give valuable information about the nature of the η and

η′ mesons and strong interactions inside them.
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Appendix–A

In this appendix, the explicit expressions of the Πnon−per
i are given,

Πnon−per
+ (p2, p′2, q2) = 〈ss̄〉

(

− ms

2rr′
+

4m2
0ms − 2m2

0mb + 3m3
s − 3m2

smb

12rr′2

+
m2

0m
3
b −m2

0m
3
s + 3m4

s − 3m3
bm

2
s − 2m2

0m
2
bms + 2m2

0mbm
2
s

12r2r′2

+
m2

0msq
2 −m2

0mbq
2 + 3m2

bm
3
s − 3mbm

3
s + 3mbm

2
sq

2 − 3m3
sq

2

12r2r′2

+
2m2

0ms − 4m2
0mb + 3msm

2
b − 3m2

smb

12r2r′

+
m2

0m
3
b − 2m3

bm
2
s + 2m2

bm
3
s −m2

0m
2
bms

4r3r′

+
2m5

s −m2
0m

3
s − 2mbm

4
s +m2

0mbm
2
s

4rr′3

)

,

Πnon−per
− (p2, p′2, q2) = 〈ss̄〉

(

2m2
0mb − 9m3

s + 3m2
smb

12rr′2

+
3m5

s −m2
0m

3
b −m2

0m
3
s + 3m3

bm
2
s +m2

0mbq
2 + 12m2

0msq
2

12r2r′2

+
3m2

bm
3
s + 3mbm

4
s − 3mbm

2
sq

2 − 3m3
sq

2

12r2r′2

+
2m2

0ms − 3msm
2
b + 6m2

smb − 3m2
smb

12r2r′

+
2m3

bm
2
s −m2

0m
3
b + 2m2

bm
3
s −m2

0m
2
bms

4r3r′

+
2m5

s −m2
0m

3
s + 2mbm

4
s −m2

0mbm
2
s

4rr′3

)

,

Πnon−per
T (p2, p′2, q2) = 〈ss̄〉

(

2m3
s + 2msmb +m2

0

4rr′

+
3m5

s −m2
0m

2
b + 3m2

sq
2 −m2

0q
2 + 3m4

s − 6m2
sm

2
b −msm

2
0mb

6rr′2

+
m2

0m
4
b −m2

0m
4
s + 3m6

s − 3m4
bm

2
s −m2

0m
3
bms +m2

0mbm
3
s

6r2r′2

+
m2

0m
2
sq

2 −m2
0m

2
bq

2 + 3m2
bm

2
sq

2 − 3m4
sq

2

6r2r′2

+
m2

0m
2
s + 3msm

3
b +m2

0q
2 − 3m2

sm
2
b + 3m4

s − 3m2
sq

2

6r2r′

+
m2

0mbms − 3m3
smb

6r2r′
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+
m2

0m
4
b − 2m4

bm
2
s + 2m2

bm
4
s −m2

0m
2
bm

2
s

2r3r′

+
2m6

s −m2
0m

4
s − 2m2

bm
4
s +m2

0m
2
bm

2
s

2rr′3

)

,

where, r = p2 −m2
b and r

′ = p
′2 −m2

s.
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FIG. 6: The dependence of the form factors on q2 at M2
1 = 12 GeV 2 and M2

2 = 5GeV 2 for P = η.

The small boxes correspond to the values obtained directly from sum rules and the solid lines

belong to the fit parametrization of the form factors.

18



q2
0 2 4 6 8 10 12 14 16 18

f C
q2

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

q2
0 2 4 6 8 10 12 14 16 18

f K
q2

K0.6

K0.5

K0.4

K0.3

K0.2

q2
0 2 4 6 8 10 12 14 16 18

f T
q2

K1.0

K0.9

K0.8

K0.7

K0.6

K0.5

FIG. 7: The dependence of the form factors on q2 at M2
1 = 12 GeV 2 and M2

2 = 5 GeV 2 for

P = η′. The small boxes correspond to the values obtained directly from sum rules and the solid

lines belong to the fit parametrization of the form factors.
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FIG. 8: The dependence of the differential branching fraction of the Bs → ητ+τ− decay with and

without the LD effects on q2. The solid and dotted lines show the results without and with the

LD effects, respectively.
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FIG. 9: The same as Fig 8 but for the Bs → ηµ+µ−.
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FIG. 10: The same as Fig 8 but for the Bs → η′τ+τ−.
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FIG. 11: The same as Fig 8 but for the Bs → η′µ+µ−.
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FIG. 12: The dependence of the differential branching fraction of the Bs → ηνν̄ decay on q2.
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FIG. 13: The same as Fig 12 but for the Bs → η′νν̄.

25



q2
5 10 15 20

P
L

K1.0

K0.5

0.0

0.5

1.0

1.5

q2
12 14 16 18 20 22 24

P
L

K0.2

K0.1

0.0

0.1

0.2

FIG. 14: The dependence of the Longitudinal lepton polarization asymmetry on q2. The left

figure belongs to the Bs → ηµ+µ− decay and the right figure corresponds to the Bs → ητ+τ−.

The solid lines and dotted lines show the results without and with the LD effects, respectively.
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FIG. 15: The same as Fig 14 but for the Bs → η′ transition.
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