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The structure of the Ds1(2460) meson has not yet been exactly known in the quark
model. Considering the Ds1 meson as a conventional cs̄ meson, we investigate the strong
form factors and coupling constants gDs1D

∗K and gDs1D
∗K∗

0
in the framework of the

three point QCD sum rules. Any future experimental measurement on these form factors
as well as coupling constants gDs1D

∗K and gDs1D
∗K∗

0
and their comparison with the

obtained results in the present work can give considerable information about the struc-
ture of this meson.
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1. Introduction

There are various application for the strong form factors and coupling constants

associated with vertices involving mesons in QCD. They are important for expla-

nation of hadronic processes in the strong interaction. Also determination of strong

coupling constants can provide a real possibility for studying the nature of the

bottomed and charmed pseudoscalar and axial vector mesons. Therefore they have

received wide attention for the new researches in QCD. Some are as follows.

• In the hadronic decays of B meson, the strong coupling constants among the

charmed meson such as gD∗D∗P , gD∗DP , gDDV and gD∗D∗V , where P and V

stand for pseudoscalar and vector mesons respectively, play an important role in

understanding the final state interaction.1
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• In production of charmonium ψ/J , ψ(2s), . . . , which are useful sources of informa-

tion in heavy ion collisions, the vertices involving charmed meson, namely

gDDψ/J , gD∗Dψ/J and gD∗D∗ψ/J appear.2

• To recognize the structure of the new hadron states such as Bs0, Bs1, Ds0 and

Ds1, one can estimate the strong coupling constants gBs0BK , gBs1BK , gDs0DK

and gDs1D∗K .4,3,5

The structure of the charmed-strange meson Ds1(2460) with the spin-parity

(JP = 1+) has not been resolved, yet and has been debated in the quark model.

Therefore different theoretical efforts are applied to the understanding ofDs1 meson

structure and quark content via various hadron states.6–15 However, some physicists

presumed that this discovered state is conventional cs̄ meson.16–26 Analysis of the

Ds1(2460) → D∗
sγ and Ds1(2460) → Ds0(2317)γ show that the quark content of

this meson is probably cs̄.27

In this work, we focus on charmed-strange meson Ds1 and consider the strong

form factor and coupling constant gDs1D∗K . We investigate Ds1 meson as a con-

ventional cs̄ state and estimate the value of the strong coupling constant between

this state and virtual meson loops D∗K via the three point QCD sum rules method

(3PSR) based on Shifman, Vainshtein and Zakharov works.28 The QCD sum rule

has been successfully applied to calculation of the strong coupling constant in

hadron physics, for example in Ref. 29. The strong coupling constant gDs1D∗K

has been calculated with other approaches such as light cone QCD sum rules4 and

heavy chiral unitary approach,30 before. In this work, we also compute the strong

form factor and coupling constant gDs1D∗K∗

0
, where K∗

0 (1430) is a scalar meson.

Finally, we compare our results with the predictions of the other approaches.

This paper is organized as follow. In Sec. 2, we calculate the form factors and

strong coupling constants gDs1D∗K and gDs1D∗K∗

0
within 3PSR method. Finally,

Sec. 3 is devoted to the numeric results and discussions.

2. The Three Point QCD Sum Rules Method

We start our discussions, considering the sufficient correlation functions responsible

for the Ds1D
∗K(K∗

0 ) meson vertices when both D∗ and K(K∗
0 ) can be off-shell. We

write the three-point correlation function associated with Ds1D
∗K and Ds1D

∗K∗
0

vertex which is given by:

ΠD
∗

νµ (p, p
′) = i2

∫

d4x d4y ei(p
′x−py)〈0|T

{

jK(K∗

0
)(x)jD

∗

ν (0)jDs1

µ

†
(y)

}

|0〉 , (1)

for off-shell D∗ meson, and:

Π
K(K∗

0
)

νµ (p, p′) = i2
∫

d4x d4y ei(p
′x−py)〈0|T

{

jD
∗

ν (x)jK(K∗

0
)(0)jDs1

µ

†
(y)

}

|0〉 , (2)

for off-shell K(K∗
0 ) meson. Here jK = s̄γ5d, j

K∗

0 = s̄d, jD
∗

ν = d̄γνc and jDs1

µ =

s̄γµγ5c are interpolating currents of K, K∗
0 , D

∗, Ds1 mesons, respectively and have

the same quantum numbers of the associative mesons. Also T is time ordering
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Fig. 1. Perturbative diagrams (a) for off-shell D∗ and (b) off-shell K(K∗
0 ).

product, p and p′ are the four momentum of the initial and final mesons, respectively

(see Fig. 1).

Equations (1) and (2) can be calculated in two different ways: in physical or

phenomenological part, the representation is in terms of hadronic degrees of freedom

which is responsible for the introduction of the form factors, decay constants and

masses. In QCD or theoretical representation, we evaluate the correlation function

in quark–gluon language and in terms of QCD degrees of freedom like quark conden-

sate, gluon condensate, etc by the help of the Wilson operator product expansion

(OPE).

In order to calculate the phenomenological part of the correlation function in

Eq. (1), three complete sets of intermediate states with the same quantum number

as the currents JK , JD
∗

and JDs1 are selected. Similarly, three complete sets of

JK
∗

0 , JD
∗

and JDs1 are inserted in Eq. (2). After some calculations and using the

following matrix elements:

〈D∗(p′, ǫ′)K(q)|Ds1(p, ǫ)〉 = −im2
Ds1

gDs1D∗K(q2)ǫ · ǫ′ ,

〈K∗
0 (p

′)D∗(q, ǫ′)|Ds1(p, ǫ)〉 = igDs1D∗K∗

0
(q2)ǫαβγσǫγ(p)ǫ

′
σ(q)pαqβ ,

〈0|jK |K(p′)〉 =
m2
KfK

ms +md
,

〈0|jK
∗

0 |K(p′)〉 = mK∗

0
fK∗

0
,

〈0|jDs1

µ |Ds1(p, ǫ)〉 = mDs1
fDs1

ǫµ(p) ,

〈0|jD
∗

ν |D∗(p′, ǫ′)〉 = mD∗fD∗ǫ′ν(p
′) ,

(3)

where q = p − p′, gDs1D∗K(q2) and gDs1D∗K∗

0
(q2) are the strong form factors, mi

and fi, i = K, K∗
0 , Ds1 and D∗ are the masses and decay constants of mesons, ǫ

and ǫ′ are the polarization vector of the Ds1 and D∗ mesons, respectively.

The general expression for the Ds1D
∗K vertex has five independent Lorentz

structures. In principle, we can work with any structure. But we must choose those
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which have less ambiguities in the QCD sum rules approach, which means, less

influence of the condensates of higher dimension, and a better stability as a function

of the Borel mass.

For the Ds1D
∗K vertex, we use the structure pµp

′
ν , which presented a better

behavior. When K(D∗) is off-shell meson, the phenomenological part is

Π
K(D∗)
νµ = ig

K(D∗)
Ds1D

∗K
(q2)

mDs1
m2

KfDs1
fD∗fK

(

m2
Ds1

+m2
D∗(K)

−q2
)

(

q2−m2
K(D∗)

)(

p2−m2
Ds1

)(

p′2−m2
D∗(K)

)

(ms+md)mD∗

pµp
′
ν + · · · .

(4)

In theDs1D
∗K∗

0 vertex, we have only one structure ǫαβµνpαp
′
β . For off-shellK

∗
0 (D

∗)

meson, the phenomenological part is

Π
K∗

0
(D∗)

νµ = −ig
K∗

0
(D∗)

Ds1D
∗K∗

0

(q2)
mDs1mK∗

0
mD∗fDs1

fD∗fK∗

0
(

q2 −m2
K∗

0
(D∗)

)(

p2 −m2
Ds1

)(

p′2 −m2
D∗(K∗

0
)

) ǫαβµνpαp
′
β + · · · .

(5)

In the Eqs. (4) and (5), . . . represents the contributions of the higher states and

continuum.

With the help of the OPE in Euclidean region, where p2, p′2 → −∞, we cal-

culate the QCD side of the correlation function containing perturbative and non-

perturbative parts. For this aim, the correlation functions for the Ds1D
∗K and the

Ds1D
∗K∗

0 vertices are written as follows, respectively:

Π
K(D∗)
νµ (p2, p′2, q2) =

(

Π(per)K(D∗)(p2, p′2, q2
)

+Π(non-per)K(D∗)(p2, p′2, q2))pµp
′
ν + · · · ,

Π
K∗

0
(D∗)

νµ (p2, p′2, q2) =
(

Π(per)K∗

0
(D∗)(p2, p′2, q2)

+ Π(non-per)K∗

0
(D∗)(p2, p′2, q2))ǫαβµνpαp

′
β + · · · .

(6)

Now, we calculate the perturbative part as shown in Fig. 1. Using the double

dispersion relation for each coefficient of the Lorentz structures pµp
′
ν and ǫ

αβµνpαp
′
β

appearing in correlation functions (Eq. (6)), we get

Π(per)M (p2, p′2, q2) = −
1

4π2

∫

ds

∫

ds′
ρM (s, s′, q2)

(s− p2)(s′ − p′2)

+ subtraction terms , (7)

where ρM (s, s′, q2) is spectral density and M stands for D∗, K or K∗
0 off-shell

meson. We calculate spectral densities in terms of the usual Feynman integrals by

the help of the Cutkosky rules, where the quark propagators are replaced by Dirac

delta functions 1
p2−m2 → (−2πi)δ(p2 −m2).
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• For the pµp
′
ν structure related to the Ds1D

∗K vertex; when D∗ meson is off-shell:

ρD
∗

(s, s′, q2) = 4iNcI0[A(2ms − 2md)

+B1(ms −mc) +B2(ms −md) +ms] , (8)

when K meson is off-shell:

ρK(s, s′, q2) = 4iNcI0[A(2md − 2ms)

+B1(mc −ms) +B2(mc +md) +mc] . (9)

• For the ǫαβµνpαp
′
β structure associated to Ds1D

∗K∗
0 vertex; when D∗ meson is

off-shell:

ρD
∗

(s, s′, q2) = 4iNcI0[B1(ms +mc) +B2(ms +md)−ms] , (10)

when K∗
0 meson is off-shell:

ρK
∗

0 (s, s′, q2) = 4iNcI0[−B1(ms +mc) +B2(−mc +md)−mc] , (11)

where

A =
1

λ2(s, s′, q2)

[

4ss′um2
3 + 4ss′∆∆′ − 3su∆′2

− 3u∆2s′ − u3m2
3 + 2u2∆∆′

]

,

B1 =
1

λ(s, s′, q2)
[2s′∆−∆′u] ,

B2 =
1

λ(s, s′, q2)
[2s∆′ −∆u] ,

(12)

and

I0(s, s
′, q2) =

1

4λ
1

2 (s, s′, q2)
,

∆ = (s+m2
3 −m2

1) ,

∆′ = (s′ +m2
3 −m2

2) ,

u = s+ s′ − q2 ,

λ(s, s′, q2) = s2 + s′2 + q4 − 2sq2 − 2s′q2 − 2ss′ ,

(13)

for off-shell D∗(K[K∗
0 ]) case, m1, m2 and m3 stand for the masses of the c(s), d

and s(c) quarks, respectively. Nc represents the color factor.

We proceed to calculate the nonperturbative contributions in the QCD side that

contain the quark–quark and quark–gluon condensate. The quark–quark condensate

is considered for light quarks u, d and s. The corresponding diagrams of quark–

quark and quark–gluon condensate for off-shellD∗ are given in Fig. 2. Contributions

of the diagrams (d), (e) and (f) in Fig. 2 are zero after applying the double Borel
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Fig. 2. (a) and (d) are the contributions of the quark–quark condensate and (b), (c), (e) and (f)
are the contributions of the quark–gluon condensate for the D∗ off-shell.

transformation with respect to the both variables p2 and p′2, because only one

variable appears in calculations. For example, for the diagram (d), we obtain

Π(non-per)D∗

νµ = −〈d̄d〉

{

−
1

4
Tr

[

F (d)
νµ (p, k)

]

+
md

16

× Tr

[(

∂

∂pα
+

∂

∂kα

)

F (d)
νµ (p, k)γα

]

+
1

32

(

m2
d −

m2
0

2

)

× Tr

[(

∂2

∂pα∂kα
+

∂2

(∂pα)2
+

∂2

(∂kα)2

)

F (d)
νµ (p, k)

]}

, (14)

where k is the four momentum of the s quark, m2
0 = 0.8± 0.2 GeV2 (Refs. 31 and

32) and F
(d)
νµ (p, k) is

F (d)
νµ (p, k) = γν iSc(p+ k)γµγ5iSs(k)iγ5 , (15)

and for quark propagator with flavor f is

iSf (p) =
i

p/ −mf
. (16)

As it is seen, there is no variable p′ in the F
(d)
νµ (p, k) function. So the contribution

of the diagram (d) is zero after the Borel transformation carried out over p2 and p′2.
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Condensate contributions of the diagrams (a), (b) and (c) are given by:

Π(non-per)D∗

νµ = −〈s̄s〉

{

1

4
Tr

[

F (a)
νµ (p, p′)

]

−
ms

16

× Tr

[(

∂

∂pα
+

∂

∂p′α

)

F (a)
νµ (p, p′)γα

]

+
1

32

(

m2
s −

m2
0

2

)

× Tr

[(

∂2

∂pα∂p′α
+

∂2

(∂pα)2
+

∂2

(∂p′α)2

)

F (a)
νµ (p, p′)

]

+
m2

0

96

(

∂

∂u′α

)

[

Tr
(

F (b)
νµα(p, p

′) + F (c)
νµα(p, p

′)
)]

}

, (17)

where 〈s̄s〉 = −0.8× (0.24± 0.1)3,33 and

F
(a)
νµ (p, p′) = iγ5iSd(p

′)γνiSc(p)γµγ5 ,

F
(b)
νµα(p, p′) = iγ5iSd(p

′)γνiSc(p− u′)γβiSc(p)γµγ5σαβ ,

F
(c)
νµα(p, p′) = iγ5iSd(p

′)γβiSd(p
′ − u′)γνiSc(p)γµγ5σαβ ,

(18)

where u′ is the four momentum of the gluon in this diagrams. For the K off-shell,

there is no quark–quark and quark–gluon condensate condensate contribution. Our

calculations show for two cases D∗ and K off-shell, the gluon–gluon condensate

contributions are very small in comparison with the quark–quark and quark–gluon

condensate contributions and we can ignore their contributions in our calculations.

In the same way, the quark–quark and quark–gluon condensate contributions

are calculated for Ds1D
∗K∗

0 vertex.

Considering Eq. (6) for extracting the Π(non-per)M (p2, p′2, q2) and after per-

forming the Borel transformation34 with respect to the variables p2(Bp2 (M
2
1 )) and

p′2(B2
p′(M

2
2 )) on the physical (phenomenological) and QCD parts and equating

these two representations of the correlations, we obtain the equation for the strong

form factors as follows.

• For the gDs1D∗K(Q2) form factors; when D∗ meson is off-shell:

gD
∗

Ds1D∗K(Q2) = C1e

m
2

Ds1

M2
1 e

m
2

K

M2
2

{

−
1

4π2

∫ s′
0

(md+ms)2
ds′

×

∫ s0

s1

dsρD
∗

(s, s′, q2)e
− s

M2
1 e

− s
′

M2
2

+Bp2(M
2
1 )B

2
p′ (M

2
2 )Π

(non-per)D∗

(p2, p′2, q2)

}

, (19)
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when K meson is off-shell:

gKDs1D∗K(Q2) = C2e

m
2

Ds1

M2
1 e

m
2

D∗

M2
2

{

−
1

4π2

∫ s′
0

(mc+md)2
ds′

×

∫ s0

s2

ds ρK(s, s′, q2)e
− s

M2
1 e

− s
′

M2
2

}

, (20)

where Q2 = −q2, s0 and s′0 are the continuum thresholds, s1 and s2 are the lower

limits of the integrals over s as:

s1(2) =

(

m2
s(c) + q2 −m2

c(s) − s′
)(

m2
c(s)s

′ − q2m2
s(c)

)

(

m2
c(s) − q2

)(

m2
s(c) − s′

) , (21)

and

C1(2) = i
mD∗

(

q2 −m2
D∗(K)

)

(ms +md)

mDs1m2
KfDs1

fD∗fK(m2
Ds1

+m2
D∗(K) − q2)

. (22)

• For the gDs1D∗K∗

0
(Q2) form factors; when D∗ meson is off-shell:

gD
∗

Ds1D∗K∗

0

(Q2) = C3 e

m
2

Ds1

M2
1 e

m
2

K∗

0

M2
2

{

−
1

4π2

∫ s′
0

(md+ms)2
ds′

×

∫ s0

s1

ds ρD
∗

(s, s′, q2)e
− s

M2
1 e

− s
′

M2
2

+Bp2
(

M2
1

)

B2
p′
(

M2
2

)

Π(non-per)D∗

(p2, p′2, q2)

}

, (23)

when K∗
0 meson is off-shell:

g
K∗

0

Ds1D∗K∗

0

(Q2) = C4e

m
2

Ds1

M2
1 e

m
2

D∗

M2
2

{

−
1

4π2

∫ s′
0

(mc+md)2
ds′

×

∫ s0

s2

ds ρK
∗

0 (s, s′, q2)e
− s

M2
1 e

− s
′

M2
2

}

, (24)

where

C3(4) = −i

(

q2 −m2
D∗(K∗

0
)

)

mDs1
mD∗mK∗

0
fDs1

fD∗fK∗

0

. (25)

3. Numerical Analysis

In this section, we analyze the strong form factors, and coupling constants for the

Ds1D
∗K and Ds1D

∗K∗
0 vertices. We choose the values of quark and meson masses

as: md = 5.6± 1.6 MeV, ms = 0.14± 0.01 GeV, mc = 1.3 GeV, mK = 0.493 GeV,

mK∗

0
= 1.425 ± 0.05 GeV, mD∗ = 2.010 GeV, mDs1

= 2.459 GeV.35 Also the

1250022-8
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Table 1. The leptonic decay constants in MeV.

fDs1
fD∗ fK fK∗

0

225± 20 230± 20 159.8 ± 1.84 445 ± 50

leptonic decay constants used in the calculation of the QCD sum rule for Ds1D
∗K

and Ds1D
∗K∗

0 vertices are presented in Table 1.35–38

The expressions for the strong form factors and coupling constants contain

also four auxiliary parameters: Borel mass parameters M1 and M2 and continuum

thresholds s0 and s′0. These are mathematical objects, so the physical quantities

i.e. strong form factors and coupling constants should be independent of them. The

parameters of s0 and s′0 are the continuum thresholds. The values of the continuum

thresholds s0 = (mi + r1)
2 and s′0 = (mo + r2)

2, where mi and mo are the masses

of the incoming and outgoing meson, respectively.39–41 We use r1 = 0.5 GeV and

r2 = 0.6 GeV in the case of D∗ off-shell and r1 = r2 = 0.5 GeV and for K(K∗
0 )

off-shell in Q2 = 1 GeV2. For Ds1D
∗K vertex, we found a good stability of the

sum rule in the interval 15 GeV2 ≤ M1 ≤ 21 GeV2 and 7 GeV2 ≤ M2 ≤ 15 GeV2

for two cases D∗ and K off-shell. Also for Ds1D
∗K∗

0 vertex, M2
1 and M2

2 are in

the interval 14 GeV2 ≤ M1 ≤ 20 GeV2 and 11 GeV2 ≤ M2 ≤ 16 GeV2 for two

cases D∗ and K∗
0 off-shell. The dependence of the strong form factors gDs1D∗K and

gDs1D∗K∗

0
on Borel mass parameters for off-shell D∗ and K mesons are shown in

Figs. 3 and 4, respectively.

For calculation of the strong form factors gDs1D∗K(Q2) and gDs1D∗K∗

0
(Q2)

within 3PSR, we have chosen the Borel masses parameters to be M2
1 =

17 GeV2, M2
2 = 8 GeV2 and M2

1 = 17 GeV2, M2
2 = 12 GeV2, respectively.

In Eqs. (19), (20) and Eqs. (23), (24), we calculated the Q2 dependence of the

strong coupling form factors in the region where the sum rule is valid. So to extend

our results to the full physical region, we look for parametrization of the form factors
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0

0.5

1

1.5

2

M
1
2(GeV2)

g D
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      D* off−shell

− − −  K  off−shell
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2
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g D
s1

D
* K

 (
Q

2 =
1 

G
eV

2 )

      D* off−shell

− − −  K  off−shell

Fig. 3. The gDs1D
∗K(Q2 = 1 GeV2) as a function of the Borel mass M2

1 with M2
2 = 8 GeV2

(left) and as a function of the Borel mass M2
2 with M2

1 = 17 GeV2 (right) for two cases D∗ and
K off-shell meson.
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Fig. 4. The gDs1D
∗K∗

0
(Q2 = 1 GeV2) as a function of the Borel mass M2

1 with M2
2 = 11 GeV2

(left) and as a function of the Borel mass M2
2 with M2

1 = 17 GeV2 (right) for two cases D∗ and
K∗

0 off-shell meson.

Table 2. Parameters appearing in
the fit functions.

Form factor A B

gK
Ds1D

∗K
12.70 6.51

gD
∗

Ds1D
∗K

1.32 56.92

g
K∗

0

Ds1D
∗K∗

0

43.53 12.21

gD
∗

Ds1D
∗K∗

0

3.24 15.61

in such a way that in the validity region of 3PSR, this parametrization coincides with

the sum rules prediction. For off-shell K and K∗
0 meson, our numerical calculations

show that the satisfactory parametrization of the form factors with respect to Q2 is:

g(Q2) =
A

Q2 +B
, (26)

and for off-shell D∗ meson the strong form factors can be fitted by the exponential

fit function as given:

g(Q2) = Ae−Q
2/B . (27)

The values of the parameters A and B are given in Table 2. The dependence of

the strong form factors in Q2 are shown in Figs. 5 and 6 for the Ds1D
∗K and

the Ds1D
∗K∗

0 vertices, respectively. These figures contain the strong form factors

obtained via fit functions and 3PSR (see Eqs. (19)–(24)). In this figures, the small

circles and boxes correspond to the form factors via 3PSR calculations. As it is

seen, the form factors and their fit functions coincide together, well.

As in previous works,39–41 we define the coupling constant as the value of the

strong coupling form factor at Q2 = −m2
m in Eqs. (26) and (27), where mm is the

mass of the off-shell meson.
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D
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 (
Q

2 )
 D* off−shell           Exponential fit 

   K  off−shell − − −  Monopolar   fit 

Fig. 5. The strong form factors gD
∗

Ds1D
∗K

(Q2) and gK
Ds1D

∗K
(Q2) as a function of Q2.

−8 −6 −4 −2 0 2 4 6 8 10
1

2

3

4

5

6

7

Q2(GeV2)

g D
s1

D
* K

* 0 (
Q

2 )

  D*  off−shell          Exponential fit

K*
0
  off−shell  − − −  Monopolar fit

Fig. 6. The strong form factors gD
∗

Ds1D
∗K∗

0

(Q2) and g
K∗

0

Ds1D
∗K∗

0

(Q2) as a function of Q2.

Considering the uncertainties results with the continuum threshold, we vary

r1,2 between 0.4 GeV ≤ r1 ≤ 0.6 GeV and 0.5 GeV ≤ r2 ≤ 0.7 GeV in the case

of D∗ off-shell and 0.4 GeV ≤ r1,2 ≤ 0.6 GeV for K(K∗
0 ) off-shell, the leptonic

decay constants fDs1
, fD∗ , fK and fK∗

0
and uncertainties in the values of the other

input parameters, we obtain the values of the strong coupling constants shown in

Table 3. We can see that the two cases considered here, off shell D∗ or K meson,

give compatible results for the coupling constant.
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Table 3. The strong coupling constants gDs1D
∗K and gDs1D

∗K∗

0
in different approaches: 3PSR

(our), light cone sum rules (LCSR),4 heavy chiral unitary,30 in GeV−1.

Strong coupling K off-shell D∗ off-shell Average (our) Ref. 4 Ref. 30
constant

gDs1D
∗K 2.03± 0.23 1.41± 0.18 1.72± 0.21 1.67± 0.57 1.78

gDs1D
∗K∗

0
4.28± 0.38 4.20± 0.42 4.24± 0.42 — —

In summary, we estimate the strong form factors and the coupling constants for

Ds1D
∗K and Ds1D

∗K∗
0 vertices within QCD sum rules. We compare our result for

gDs1D∗K with the results of the other approaches such as light cone QCD sum rules

and heavy chiral unitary. Detection of these strong form factors and the coupling

constants and their comparison with the phenomenological models like QCD sum

rules could give useful information about the structure of the Ds1(2460) axial vector

meson.

References

1. Z. G. Wang, Nucl. Phys. A 796, 61 (2007).
2. M. E. Bracco, M. Chiapparini, F. S. Navarra and M. Nielson, Phys. Lett. B 605, 326

(2005).
3. P. Colangelo and F. De Fazio, Phys. Lett. B 559, 49 (2003).
4. Z. G. Wang, J. Phys. G 34, 753 (2007).
5. Z. G. Wang, Phys. Rev. D 77, 054024 (2008).
6. E. Kolomeitsev and M. Lutz, Phys. Lett. B 582, 39 (2004).
7. T. Barnes, F. E. Close and H. J. Lipkin, Phys. Rev. D 68, 054006 (2003).
8. A. P. Szczepaniak, Phys. Lett. B 567, 23 (2003).
9. H. Y. Cheng and W. S. Hou, Phys. Lett. B 566, 193 (2003).

10. K. Terasaki, Phys. Rev. D 68, 011501 (2003).
11. T. E. Browder, S. Pakvasa and A. A. Petrov, Phys. Lett. B 578, 365 (2004).
12. U. Dmitrasinovic, Phys. Rev. D 70, 096011 (2004).
13. U. Dmitrasinovic, Phys. Rev. Lett. 94, 162002 (2005).
14. M. E. Bracco, A. Lozea, R. D. Matheus, F. S. Navarra and M. Nielsen, Phys. Lett. B

624, 217 (2005).
15. H. Kim and Y. Oh, Phys. Rev. D 72, 074012 (2005).
16. S. Godfrey, Phys. Lett. B 568, 254 (2003).
17. W. A. Bardeen, E. J. Eichten and C. T. Hill, Phys. Rev. D 68, 054024 (2003).
18. M. A. Nowak, M. Rho and I. Zahed, Acta Phys. Pol. B 35, 2377 (2004).
19. A. Deandrea, G. Nardulli and A. D. Polosa, Phys. Rev. D 68, 097501 (2003).
20. R. N. Cahn and J. D. Jackson, Phys. Rev. D 68, 037502 (2003).
21. Y. B. Dai, C. S. Huang, C. Liu and S. L. Zhu, Phys. Rev. D 68, 114011 (2003).
22. W. Lucha and F. Schobert, Mod. Phys. Lett. A 18, 2837 (2003).
23. J. Hofmann and M. F. M. Lutz, Nucl. Phys. A 733, 142 (2004).
24. M. Sadzikowski, Phys. Lett. B 579, 39 (2004).
25. D. Becirevic et al., Phys. Lett. B 599, 59 (2004).
26. T. Lee, I. W. Lee, D. P. Min and B. Y. Park, Eur. Phys. J. C 49, 737 (2007).
27. P. Colangelo, F. De Fazio and A. Ozpineci, Phys. Rev. D 72, 074004 (2005).
28. M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 147, 448 (1979).

1250022-12



February 23, 2012 11:8 WSPC/Guidelines-IJMPA S0217751X12500224

The Strong Coupling Constants gDs1D
∗K and gDs1D

∗K∗

0
in QCD Sum Rules

29. H. Sundu, J. Y. Sungu, S. Sahin, N. Yinelek and K. Azizi, Phys. Rev. D 83, 114009
(2011).

30. F. K. Guo, P. N. Shen and H. C. Chiang, Phys. Lett. B 647, 133 (2007).
31. H. G. Dosch, M. Jamin and S. Narison, Phys. Lett. B 220, 251 (1989).
32. V. M. Belyaev and B. L. Ioffe, Sov. Phys. JETP 57, 716 (1982).
33. B. L. Ioffe, Prog. Part. Nucl. Phys. 56, 232 (2006).
34. B. L. Loffe and A. V. Smilga, Nucl. Phys. B 216, 373 (1983).
35. Particle Data Group (K. Nakamura et al.), J. Phys. G 37, 075021 (2010).
36. C. E. Thomas, Phys. Rev. D 73, 054016 (2006).
37. P. Colangelo, F. De Fazio and A. Ozpineci, Phys. Rev. D 72, 074004 (2005).
38. H. Y. Cheng, C. K. Chua and K. C. Yang, Phys. Rev. D 73, 014017 (2006).
39. F. S. Navarra, M. Nielsen, M. E. Bracco, M. Chiapparini and C. L. Schat, Phys. Lett.

B 489, 319 (2000).
40. F. S. Navarra, M. Nielsen and M. E. Bracco, Phys. Rev. D 65, 037502 (2002).
41. M. E. Bracco, M. Chiapparini, F. S. Navarra and M. Nielsen, Phys. Lett. B 659, 559

(2008).

1250022-13


