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In this paper, the dependency of Pij ’s on the dilepton invariant mass, q2, and the model III two-Higgs-

doublets model (2HDM) parameters for B ! K�
0ð1430Þ‘þ‘� decay were investigated, and the results

were compared to those of the standard model (SM) and Appelquist, Cheng and Dobrescu model. Also,

for this decay, the effects of model III 2HDM parameters on the averages of double-lepton polarization

asymmetries, hPiji’s, were studied, and by taking into account the corresponding theoretical and

experimental errors in the SM, the results of the SM and 2HDM were compared to each other. In

addition, by comparing the averages of double-lepton polarization asymmetries in 2HDM to those of SM4

and obtaining the required number of events for detecting each asymmetry at the LHC or the Super Large

Hadron Collider, we present a comprehensive discussion regarding the lepton polarizations of B !
K�

0‘
þ‘� decay. We discovered that the study of the double-lepton polarization asymmetries and the

corresponding averages in the B ! K�
0ð1430Þ‘þ‘� decay can provide good signals for probing new

physics beyond the SM in the future B-physics experiments.
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I. INTRODUCTION

The decays induced by lepton-flavor violating tran-
sitions or caused by flavor-changing neutral current
(FCNC) transitions provide an excellent testing ground
for the standard model (SM). These decays which are
suppressed in the SM at tree level arise at loop level and
are very sensitive to the gauge structure of the SM.
Moreover, these decays are also quite sensitive to the
existence of new physics beyond the SM, since either
loop processes with new particles [1–7] or allowed new
diagrams at tree level [8–10] can give considerable con-
tribution to rare decays. Among these, the rare B-meson
decays, which take place via the FCNC, including b !
sðdÞ transition, play a distinctive role in both experimental
measurements and theoretical studies for the precision test
of the SM and for searching new physics beyond the SM.

Although most experiments are in agreement with the
SM predictions, it is widely believed that the SM cannot be
the final theory of particle physics and merely could be an
effective theory at the electroweak scale, in particular,
because the Higgs sector of the SM is not well-understood
yet, and the cause of neutrino oscillations, matter-
antimatter asymmetry, and the nature of dark matter are
not explicitly explained in the SM. As a result, for under-
standing these phenomena, new physics beyond the SM
should be included. Some possible extensions of the SM
are the little Higgs model [11,12], extra dimensions
[13,14], and multi-Higgs models like the minimal super-
symmetric standard model [15], which are extensively

explored by many reseachers. One of the most popular
extensions of the SM is two-Higgs-doublets model
(2HDM) in which two complex Higgs doublets are con-
sidered, contrary to the SM which contains only one. In
general, in 2HDM, the FCNCs that happen at tree level are
eliminated by imposing an ad hoc discrete symmetry [16].
One possible approach to keeping neutral flavor conserva-
tion at tree level is to couple all fermions to only one of the
aforementioned Higgs doublets (model I). Another possi-
bility is the coupling of the up-type quarks to the first Higgs
doublet and down-type quarks to the second Higgs doublet
(model II). Model II is more popular because its Higgs
sector coincides with the ones in the supersymmetric
model. The physical content of the Higgs sector, which is
model independent, includes five physical Higgs fields:
neutral scalars H0, h0; neutral pseudoscalar A0; and
charged Higgs bosons H�. The interaction vertex of fer-
mions with Higgs fields depend on tan� ¼ v2=v1, where
v1 and v2 are the vacuum expectation values of the two
Higgs doublets. The constraints on the charged Higgs
boson mass and tan� are usually obtained by using experi-
mental results for the branching ratio of b ! s� and B !
D� ��� decays as well as B� �B and K � �K mixing in the
literature[17]. Without considering discrete symmetry, a
more general form of 2HDM, namely, model III has been
obtained, which allows for the presence of FCNC at tree
level. Consistent with the low energy constraints, the
FCNCs involving the first two generations are highly sup-
pressed, and those involving the third generation are not as
severely suppressed as the first two generations. Also, in
such a model, there exists rich induced CP-violating
sources from a single CP phase of vacuum that is absent
in the SM, model I, and model II.
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One efficient way for discovering new physics is the
measurement of lepton polarization in the semileptonic
decays of B which has been widely discussed in the
literature [1–7,18–20]. Based on this, the aim of the
present work is to derive quantitative predictions for
the double-lepton polarization asymmetries in the exclu-
sive B ! K�

0ð1430Þ‘þ‘� decay, in the context of the gen-

eral two-Higgs-doublet model with spontaneous CP
violation (model III). We also suppose that all tree level
FCNC couplings are negligible. The constraints on the
phase angle � in the product �tt�bb of Higgs-fermion
coupling and the magnitudes of �tt and �bb come from
the experimental results of the electric dipole moments of
electron and neutron, B0 � �B0 mixing, �0, Rb, �ðb ! s�Þ,
and �ðb ! c� ���Þ [21–24]. It is also worth noting that the
effects of two other new physics models beyond the SM,
SM4 [6] and Appelquist, Cheng and Dobrescu model
(ACDM) [25], have recently been investigated on the
same asymmetries of B ! K�

0ð1430Þ‘þ‘� decay, which

have been discussed in this work; we have also compared
the results of this paper to the results of Refs. [6,25].

This paper is organized as follows. In Sec. II, we first
present the expressions for the matrix elements of B to
a scalar meson, here B ! K�

0ð1430Þ‘þ‘�, in SM and

2HDM. Then, the general expressions for the double-
lepton polarization asymmetries have been extracted
out. The sensitivity of these polarizations and the
corresponding averages to the model III 2HDM para-
meters have been numerically analyzed in Sec. III. In
the final section, a summery of concluding remarks is
presented.

II. THE MATRIX ELEMENTAND
DOUBLE-LEPTON POLARIZATIONS OF

B ! K�
0‘

þ‘� IN SM AND 2HDM

The QCD-corrected effective Hamiltonian for the decay
B ! K�

0‘
þ‘�, which is described by the b ! s‘þ‘�

transition at quark level in the general 2HDM, can be
written as [26]

H eff ¼�4GFffiffiffi
2

p VtbV
�
ts

�X10
i¼1

Cið�ÞOið�ÞþX10
i¼1

CQi
ð�ÞQið�Þ

�
;

(1)

where the first set of operators in the curly brackets
is related to the effective Hamiltonian in the SM, and
the corresponding Wilson coefficients are modified by
considering the contributions of charged Higgs dia-
grams. The explicit forms of these operators and the
corresponding Wilson coefficients Ci can be found in
Ref. [27]. The second set of operators in the brackets,
whose explicit forms are presented in Ref. [26], origi-
nate from the neutral Higgs bosons exchange diagrams.
The corresponding Wilson coefficients at scale � ’ mW

are

CQ1
ðmWÞ¼mbm‘

m2
h0

1

j�ttj2
1

sin2�W

x

4
fðsin2	þhcos2	Þf1ðx;yÞ

þ
�
m2

h0

m2
W

þðsin2	þhcos2	Þð1�zÞ�f2ðx;yÞ

þsin22	

2m2
H�

�
m2

h0
�ðm2

h0
þm2

H0Þ2
2m2

H0

�
f3ðyÞ

�
; (2)

CQ2
ðmWÞ ¼ �mbm‘

m2
A0

1

j�ttj2
�
f1ðx; yÞ

þ
�
1þm2

H� �m2
A0

m2
W

�
f2ðx; yÞ

�
; (3)

CQ3
ðmWÞ ¼ mbe

2

m‘g
2
½CQ1

ðmWÞ þ CQ2
ðmWÞ�; (4)

CQ4
ðmWÞ ¼ mbe

2

m‘g
2
½CQ1

ðmWÞ � CQ2
ðmWÞ�; (5)

CQi
ðmWÞ ¼ 0 i ¼ 5; . . . ; 10; (6)

where

x¼ m2
t

m2
W

; y¼ m2
t

m2
H�

; z¼ x

y
; h¼ m2

h0

m2
H0

;

f1ðx; yÞ ¼ x lnx

x� 1
� y lny

y� 1
;

f2ðx; yÞ ¼ x lny

ðz� xÞðx� 1Þ þ
lnz

ðz� 1Þðx� 1Þ ;

f3ðyÞ ¼ 1� yþ y lny

ðy� 1Þ2 :

The QCD correction to the Wilson coefficients CiðmWÞ
and CQi

ðmWÞ can be taken into account using the renor-

malization group equations. As it is discussed in Ref. [26],
the operators O9 and O10 do not mix with Qiði ¼
1; . . . ; 10Þ, so that the evolution of Wilson coefficients C9

and C10 remain unchanged compared to their SM values.
In addition, the operators Oiði ¼ 1; . . . ; 10Þ and Qiði ¼

3; . . . ; 10Þ do not mix into Q1 and Q2, and also there is no
mixing betweenQ1 andQ2. Therefore, the evolution of the
coefficients CQ1

and CQ2
are performed by the anomalous

dimensions of Q1 and Q2, respectively:

CQi
ðmbÞ ¼ 
��Q=�0CQi

ðmWÞ; i ¼ 1; 2;

where �Q ¼ �4 is the anomalous dimension of the opera-

tor �sLbR.
Now, using the aforementioned effective Hamiltonian,

the one-loop matrix elements of b ! s‘þ‘� can be given
in terms of the tree-level matrix elements of the effective
operators as
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M ¼ hs‘þ‘�jH effjbi
¼ � GF	

2
ffiffiffi
2

p
�
VtbV

�
tsf ~Ceff

9 �s��ð1� �5Þb �‘��‘þ ~C10 �s��ð1� �5Þb �‘���5‘� 2Ceff
7

mb

q2
�si���q

�ð1þ �5Þb �‘��‘

� 2Ceff
7

ms

q2
�si���q

�ð1� �5Þb �‘��‘þ CQ1
�sð1þ �5Þb �‘‘þ CQ2

�sð1þ �5Þb �‘�5‘g; (7)

where q2 is the invariant dileptonic mass, and the Wilson coefficients Ceff
7 , ~Ceff

9 , ~C10, CQ1
, and CQ2

are calculated at the
scale mb. In order to obtain the effective coefficients Ceff

7 , ~Ceff
9 , and ~C10 at the scale mb, the values of coefficients C7, ~C9,

and ~C10 at the scale mW are needed[1,26]. These coefficients, which are yielded from their SM values by adding the
contributions due to the charged Higgs bosons exchange diagrams, are given by

C7ðmWÞ ¼ CSM
7 ðmWÞ þ j�ttj2

�
yð7� 5y� 8y2Þ

72ðy� 1Þ3 þ y2ð3y� 2Þ
12ðy� 1Þ4 lny

�
þ �tt�bb

�
yð3� 5yÞ
12ðy� 1Þ2 þ

yð3y� 2Þ
6ðy� 1Þ3 lny

�
; (8)

~C9ðmWÞ ¼ ~CSM
9 ðmWÞ þ j�ttj2

�
1� 4sin2�W

sin2�W

xy

8

�
1

y� 1
� 1

ðy� 1Þ2 lny

�
� y

�
47y2 � 79yþ 38

108ðy� 1Þ3 � 3y3 � 6y3 þ 4

18ðy� 1Þ4 lny

��
;

(9)

~C10ðmWÞ ¼ ~CSM
10 ðmWÞ þ j�ttj2 1

sin2�W

xy

8

�
� 1

y� 1
þ 1

ðy� 1Þ2 lny

�
: (10)

It is observed from Eqs. (2), (3), and (8)–(10) that the SM results for the Wilson coefficients can be obtained from the
corresponding coefficients in 2HDM by making the following replacements:

CQ1
! 0; CQ2

! 0; CSM
7 ðmWÞ ¼ C7ðy ! 0Þ; ~CSM

9 ðmWÞ ¼ ~C9ðy ! 0Þ; ~CSM
10 ðmWÞ ¼ ~C10ðy ! 0Þ:

Note that the coefficient ~Ceff
9 ð�; q2Þ � ~C9ð�Þ þ Yð�; q2Þ, where function Y contains the short-distance contributions from

the one-loop matrix elements of the four quark operators, Yperðq2Þ, as well as the long-distance effects associated with real
c �c in the intermediate states, YLDðq2Þ. Therefore, Yðq2Þ ¼ Yperðq2Þ þ YLDðq2Þ. The function Yperðq2Þ is given by

Yperðq2Þ ¼ g

�
mc

mb

; s

�
ð3C1 þ C2 þ 3C3 þ C4 þ 3C5 þ C6Þ � 1

2
gð1; sÞð4C3 þ 4C4 þ 3C5 þ C6Þ � 1

2
gð0; sÞðC3 þ 3C4Þ

þ 2

9
ð3C3 þ C4 þ 3C5 þ C6Þ; (11)

where the explicit expressions for the g functions can be
found in Ref. [28]. YLD is usually parameterized by using
Breit-Wigner ansatz [29],

YLD ¼ 3�

	2
Cð0Þ X

Vi¼c ;c 0;...
ki

�ðVi ! ‘þ‘�ÞmVi

m2
Vi
� q2 � imVi

�Vi

;

where 	 is the fine structure constant, and Cð0Þ ¼ ð3C1 þ
C2 þ 3C3 þ C4 þ 3C5 þ C6Þ. The phenomenological
parameters ki for the B ! K�ð1430Þ‘þ‘� decay can be
fixed from BðB ! J=cK�ð1430Þ ! K�ð1430Þ‘þ‘�Þ ¼
BðB ! J=cK�ð1430ÞÞBðJ=c ! ‘þ‘�Þ. However, since
the branching ratio of B ! J=cK�ð1430Þ decay has not
been measured yet, we assume that the values of ki are in
the order of 1. Therefore, we use k1 ¼ 1 and k2 ¼ 1 in the
following numerical calculations.

From Eq. (7), it is obvious that, in order to calcu-
late the decay width and other observables for the
exclusive B ! K�

0ð1430Þ‘þ‘� channel, the matrix ele-

ments hK�
0ð1430Þj�s��ð1� �5ÞbjBi, hK�

0ð1430Þj�si����
q�ð1þ �5ÞbjBi, and hK�

0ð1430Þj�sð1þ �5ÞbjBi have to be

calculated. These matrix elements can be parametrized in
terms of the form factors fþ, f�, and fT in the following
way:

hK�
0ð1430Þ j �s��ð1� �5Þb j Bi
¼ �½fþðq2ÞðpB þ pK�

0
Þ� þ f�ðq2Þq��; (12)

hK�
0ð1430Þ j �si���q

�ð1��5Þb jBi

¼ �fTðq2Þ
mBþmK�

0

½ðpBþpK�
0
Þ�q2�ðm2

B�m2
K�

0
Þq��; (13)

where q ¼ pB � pK�
0
is the momentum transfer. To calcu-

late the matrix element hK�
0ð1430Þj�sð1þ �5ÞbjBi, we

multiply both sides of Eq. (12) by q� and use the equation

of motion. Finally, we get

hK�
0ð1430Þ j �sð1þ �5Þb j Bi ¼ �f0ðq2Þ

mb þms

; (14)

where
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f0ðq2Þ ¼ fþðq2Þðm2
B �m2

K�
0
Þ þ q2f�ðq2Þ: (15)

Using Eqs. (12)–(14), we obtain for the matrix element of
the B ! K�

0‘
þ‘� decay [30]

MðB!K�
0‘

þ‘�Þ
¼� GF	

4
ffiffiffi
2

p
�
VtbV

�
tsf �‘��‘½AðpBþpK�

0
Þ�þBq��

þ �‘���5‘½CðpBþpK�
0
Þ�þDq��þ �‘‘Qþ �‘�5‘Ng:

(16)

The functions entering Eq. (16) are defined as

A ¼ �ðCLL þ CLRÞfþ þ 2ðCBR � CSLÞ fT
mB þmK�

0

;

B ¼ �ðCLL þ CLRÞf� � 2ðCBR � CSLÞ fT
ðmB þmK�

0
Þq2

� ðm2
B �m2

K�
0
Þ;

C ¼ �ðCLR � CLLÞfþ; D¼ �ðCLR � CLLÞf�;

Q ¼ �f0
m2

B �m2
K�

0

mb þms

ðCLRLR þ CRLLR þ CLRRL þ CRLRLÞ;

N ¼ �f0
m2

B �m2
K�

0

mb þms

ðCLRLR þ CRLLR � CLRRL � CRLRLÞ;
(17)

where

CLL ¼ ð ~Ceff
9 � ~C10Þ; CLR ¼ ð ~Ceff

9 þ ~C10Þ;
CSL ¼ �2msC

eff
7 ; CBR ¼ �2mbC

eff
7 ;

CLRLR ¼ CQ1
þ CQ2

; CLRRL ¼ CQ1
� CQ2

;

CRLLR ¼ CRLRL ¼ 0:

(18)

In the present work, we use the three-point QCD-sum-rules
predictions for the relevant form factors of the B ! K�

0

transition, in which the form factors

Fðq2Þ 2 ffþðq2Þ; f�ðq2Þ; fTðq2Þg
are fitted to the following functions [31]:

Fðq2Þ ¼ Fð0Þ
1� aF

q2

m2
B

þ bF
�
q2

m2
B

	
2
; (19)

where the parameters Fð0Þ, aF, and bF are listed in Table I.
From the expression of the matrix element given in
Eq. (16), we get the following result for the differential
decay with:

d�

dŝ
ðB!K�

0‘
þ‘�Þ¼G2	2mB

214�5
jVtbV

�
tsj2�1=2ð1; r̂K�

0
; ŝÞv�ðŝÞ;

(20)

where �ð1; r̂K�
0
; ŝÞ ¼ 1þ r̂2K�

0
þ ŝ2 � 2r̂K�

0
� 2ŝ� 2r̂K�

0
ŝ,

ŝ ¼ q2=m2
B, r̂K�

0
¼ m2

K�
0
=m2

B, m̂‘ ¼ m‘=mB, and v ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m̂2

‘=ŝ
q

is the final lepton velocity. Also, �ðŝÞ is

�¼4m2
B

3
Re½þ24m2

Bm̂
2
‘ð1� r̂K�

0
ÞðCD�Þ

þ12mBm̂‘ð1�r̂K�
0
ÞðCN�Þþ12m2

Bm̂
2
‘ŝjDj2

þ3ŝjNj2þ12mBm̂‘ŝðDN�Þþ�m2
Bð3�v2ÞjAj2

þ3ŝv2jQj2þm2
Bf2��ð1�v2Þ½2��3ð1� r̂K�

0
Þ2�gjCj2�:

(21)

We now proceed by calculating the double-polarization
asymmetries, i.e., when polarizations of both leptons are
simultaneously measured. We introduce a spin projection
operator defined by

�1 ¼ 1
2ð1þ �5s

�
i Þ; �2 ¼ 1

2ð1þ �5s
þ
i Þ

for lepton ‘� and antilepton ‘þ, where i ¼ L, N, T are the
abbreviations of longitudinal, normal, and transversal po-
larizations, respectively. Firstly, we define the following
orthogonal unit vectors s�� in the rest frame of ‘� and sþ�

in the rest frame of ‘þ:

s
��
L ¼ ð0; ~e�L Þ ¼

�
0;

~p�
j ~p�j

�
;

s
��
N ¼ ð0; ~e�N Þ ¼

�
0;

~pK�
0
� ~p�

j ~pK�
0
� ~p�j

�
;

s��
T ¼ ð0; ~e�T Þ ¼ ð0; ~e�N � ~e�L Þ;

sþ�
L ¼ ð0; ~eþL Þ ¼

�
0;

~pþ
j ~pþj

�
;

sþ�
N ¼ ð0; ~eþN Þ ¼

�
0;

~pK�
0
� ~pþ

j ~pK�
0
� ~pþj

�
;

s
þ�
T ¼ ð0; ~eþT Þ ¼ ð0; ~eþN � ~eþL Þ;

(22)

where ~p� and ~pK�
0
are the three-momenta of the leptons ‘�

and K�
0 meson in the center-of-mass frame (CM) of the

‘�‘þ system, respectively. By using Lorentz transforma-
tion, we boost the unit vectors from the rest frame of
leptons to the CM frame of leptons. While the vector

s��
L changes as

TABLE I. Parameters entering the fit parametrization of the
form factors for the B ! K�

0ð1430Þ transition [31].

Fð0Þ aF bF

f
B!K�

0þ 0:31� 0:08 0.81 �0:21
f
B!K�

0� �0:31� 0:07 0.80 �0:36
f
B!K�

0

T �0:26� 0:07 0.41 �0:32
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ðs��
L ÞCM ¼

�j ~p�j
m‘

;
E ~p�

m‘j ~p�j
�
; ðsþ�

L ÞCM ¼
�j ~p�j
m‘

;� E ~p�
m‘j ~p�j

�
; (23)

the other two unit vectors s��
N and s��

T remain unchanged.
We can now define the double-lepton polarization asymmetries as [30]:

PijðŝÞ ¼
ðd�dŝ ð ~s�i ; ~sþj Þ � d�

dŝ ð�~s�i ; ~sþj ÞÞ � ðd�dŝ ð ~s�i ;�~sþj Þ � d�
dŝ ð�~s�i ;�~sþj ÞÞ

ðd�dŝ ð ~s�i ; ~sþj Þ þ d�
dŝ ð�~s�i ; ~sþj ÞÞ þ ðd�dŝ ð ~s�i ;�~sþj Þ þ d�

dŝ ð�~s�i ;�~sþj ÞÞ
; (24)

where i, j ¼ L, N, T; the first subindex i corresponds to the lepton while the second subindex j corresponds to the
antilepton, respectively. After doing calculations, we get the following results for the double-polarization asymmetries:

PLL ¼ 4m2
B

3�
Re½þ24m2

Bm̂
2
‘ð1� r̂K�

0
ÞðC�DÞ þ 12mBm̂‘ð1� r̂K�

0
ÞðC�NÞ � �m2

Bð1þ v2ÞjAj2 þ 12m2
Bm̂

2
‘ŝjDj2 þ 3ŝjNj2

þ 12mBm̂‘ŝðD�NÞ þ 3ŝv2jQj2 �m2
Bf2�� ð1� v2Þ½2�þ 3ð1� r̂K�

0
Þ2�gjCj2�; (25)

PLN ¼ 2�m3
B

ffiffiffiffiffiffi
�ŝ

p
ŝ�

Im½2mBm̂‘ŝ ImðA�DÞ þ ŝðA�NÞ � ŝv2ðC�QÞ þ 2mBm̂‘ð1� r̂K�
0
ÞðA�CÞ�; (26)

PNL ¼ 2�m3
B

ffiffiffiffiffiffi
�ŝ

p
ŝ�

Im½�2mBm̂‘ŝðA�DÞ � ŝðA�NÞ þ ŝv2ðC�QÞ � 2mBm̂‘ð1� r̂K�
0
ÞðA�CÞ�; (27)

PLT ¼ 2�m3
B

ffiffiffiffiffiffi
�ŝ

p
ŝ�

Re½2mBm̂‘ð1� r̂K�
0
ÞvjCj2 þ 2mBm̂‘ŝvðC�DÞ þ ŝvðC�NÞ � ŝvðA�QÞ�; (28)

PTL ¼ 2�m3
B

ffiffiffiffiffiffi
�ŝ

p
ŝ�

Re½2mBm̂‘ð1� r̂K�
0
ÞvjCj2 þ 2mBm̂‘ŝvðC�DÞ þ ŝvðC�NÞ þ ŝvðA�QÞ�; (29)

PNT ¼ 8m2
Bv

3�
Im½þ6mBm̂‘ŝðD�QÞ þ 3ŝðN�QÞ � 2�m2

BðA�CÞ þ 6mBm̂‘ð1� r̂K�
0
ÞðC�QÞ�; (30)

PTN ¼ 8m2
Bv

3�
Im½þ6mBm̂‘ŝðD�QÞ þ 3ŝðN�QÞ þ 2�m2

BðA�CÞ þ 6mBm̂‘ð1� r̂K�
0
ÞðC�QÞ�; (31)

PTT ¼ 4m2
B

3�
Re½�24m2

Bm̂
2
‘ð1� r̂K�

0
ÞðC�DÞ � 12mBm̂‘ð1� r̂K�

0
ÞðC�NÞ � �m2

Bð1þ v2ÞjAj2 � 12m2
Bm̂

2
‘ŝjDj2

� 3ŝjNj2 � 12mBm̂‘ŝðD�NÞ þ 3ŝv2jQj2 þm2
Bf2�� ð1� v2Þ½2�þ 3ð1� r̂K�

0
Þ2�gjCj2�; (32)

PNN ¼ 4m2
B

3�
Re½�3ŝv2jQj2 þ 12m2

Bm̂
2
‘ŝjDj2 þ 3ŝjNj2 þ 12mBm̂‘ŝðD�NÞ � �m2

Bð3� v2ÞjAj2

þm2
Bf2�� ð1� v2Þ½2�� 3ð1� r̂K�

0
Þ2�gjCj2 þ 24m2

Bm̂
2
‘ð1� r̂K�

0
ÞðC�DÞ þ 12mBm̂‘ð1� r̂K�

0
ÞðC�NÞ�: (33)

III. RESULTS AND DISCUSSIONS

In this section, the q2 dependence of the double-lepton polarization asymmetries as well as the average of these
quantities over q2, which is defined by

hPiji ¼
Rð1� ffiffiffiffiffiffi

r̂K�
0

p Þ2
4m̂2

‘

Pij
dB
dŝ dŝ

Rð1� ffiffiffiffiffiffi
r̂K�

0

p Þ2
4m̂2

‘

dB
dŝ dŝ

; (34)
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on the parameters of model III 2HDM are studied. The
full kinematical interval of the dilepton invariant mass
q2 is 4m2

‘ � q2 � ðmB �mK�
0
Þ2, for which the long-

distance effects (the charmonium resonances) can give
significant contribution by including the first and second
resonances J=c and c 0, in the interval of 8 GeV2 �
q2 � 14 GeV2. In order to reduce the hadronic uncer-
tainties, we divide the kinematical region of q2 for
muon as

I 4m2
‘ � q2 � ðmJc � 0:02 GeVÞ2;

II ðmJc þ 0:02 GeVÞ2 � q2 � ðmc 0 � 0:02 GeVÞ2;
III ðmc 0 þ 0:02 GeVÞ2 � q2 � ðmB �mK�

0
Þ2;

and for tau as

I 4m2
‘ � q2 � ðmc 0 � 0:02 GeVÞ2;

II ðmc 0 þ 0:02 GeVÞ2 � q2 � ðmB �mK�
0
Þ2:

Since in model III 2HDM �tt and �bb can be complex
parameters, we can rewrite the following product as

�tt�bb � j�tt�bbjei�; (35)

where j�ttj, j�bbj, and the phase angle � are restricted by
the experimental results of the electric dipole moments
of neutron, B0 � �B0 mixing, �0, Rb, and Brðb ! s�Þ
[21–24]. The experimental limits on the electric dipole
moments of neutron and Brðb ! s�Þ, plus MHþ , which is
obtained at LEPII, put constraints on �tt�bb to be nearly
1 and the phase angle � to be in the interval between
60	–90	. The experimental value of the xd parameter,
relating to B0 � �B0 mixing, imposes the following con-
dition on j�ttj, which is j�ttj � 0:3. Also, the parameter
Rb, which is defined as Rb � �ðZ!b �bÞ

�ðZ!hadronsÞ , keeps j�bbj
approximately fixed, j�bbj ’ 50. Using these restrictions
and taking � ¼ �=2, we consider the following three
typical parameter spaces throughout the numerical
analysis:

Case A: j�ttj ¼ 0:03; j�bbj ¼ 100;

Case B: j�ttj ¼ 0:15; j�bbj ¼ 50;

Case C: j�ttj ¼ 0:3; j�bbj ¼ 30:

(36)

In addition, in our numerical analysis, we have used two
sets of masses of Higgs bosons, which are displayed in
Table II. For form factors, as pointed out in Sec. II, we
have chosen the predictions of three-point QCD sum rules
method [31], and for the other input parameters, we have
used the following values [32]:

mB ¼ 5:279� 0:03 GeV; mK�
0
¼ 1:425� 0:05 GeV;

mb ¼ 4:19þ0:18
�0:06 GeV; mc ¼ 1:27þ0:07

�0:09 GeV;

ms ¼ 0:101þ0:029
�0:021 GeV; m� ¼ 0:105 GeV;

m� ¼ 1:77 GeV; 	�1 ¼ 129;

�B ¼ ð1:525� 0:009Þ � 10�12 s;

� ¼ 0:2253� 0:0007; A ¼ 0:808þ0:022
�0:015;

�� ¼ 0:132þ0:022
�0:014; �
 ¼ 0:341� 0:013;

(37)

where A, �, ��, �
 are the Wolfenstein parameters in the
Cabibbo-Kobayashi-Maskawa matrix.
We have presented our analysis for the dependency of

Pij on the dilepton invariant mass, q2, and the model III

2HDM parameters in a series of figures (see Figs. 1–7). In
addition, by considering the theoretical and experimental
uncertainties for the average of double-lepton polarization
asymmetries in B ! K�

0‘
þ‘� decay in the SM, the effects

of model III 2HDM parameters for both mass sets of Higgs
bosons were studied on the mentioned asymmetries in
Tables III and IV. Besides, as it was stated in the introduc-
tion, for each asymmetry, we have compared our results
with those of SM4 [6] and ACDM [25]. It should be
mentioned finally that the theoretical uncertainties come
from the hadronic uncertainties related to the form factors,
and the experimental uncertainties originate from the mass
of quarks, hadrons, and Wolfenstein parameters.
(i) Figure 1 and Tables III and IV: As it is seen from this

figure, the dependency of PLL on q2 for the �
channel in the SM and 2HDM, to a large extent, is
the same, such that the tree plots of 2HDM concern-
ing each mass set of Higgs bosons coincide with the
SM plot. In the � channel, the dependency of this
asymmetry on the mass sets of Higgs bosons is more
observed, such that the maximum deviation from the
SM value, which is about 20% SM, happens in the
case C of mass set 2 at q2 ¼ 4m2

�. It is also obvious
from Tables III and IV that the magnitude of hPLLi in
2HDM for the � channel and � channel is in
the range of SM prediction. The comparison of the
results of this article for PLL and its averages in the
� channel and � channel with those of Ref. [6,25]
indicate that this asymmetry for all these models lies
in the range of SM anticipation, and the results of
these models show no significant differences from
each other.

TABLE II. List of the values for the masses of the Higgs
particles.

mA0 mh0 mH0 mH�

mass set 1 120 GeV 115 GeV 160 GeV 200 GeV

mass set 2 95 GeV 100 GeV 125 GeV 160 GeV
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(ii) Figure 2 and Tables III and IV: It is seen from
Eqs. (26) and (27) that, in both SM and 2HDM,
PLN is an antisymmetric quantity under the
exchange of L and N, i.e. PLN ¼ �PNL.
Therefore, we only investigate the dependency
of PLN on q2 and 2HDM parameters in the SM
and 2HDM. From these plots, it is apparent that,
although for both mass sets of Higgs bosons and
both ranges 4m2

� � q2 � 4m2
c and 4m2

c < q2 �
ðmB �mK�

0
Þ2 for the � channel and both ranges

4m2
� � q2 � 4m2

c 0 and 4m2
c 0 < q2 � ðmB �mK�

0
Þ2

for the � channel, as j�tt�bbj and j�ttj2 increase, the

differences between the predictions of the SM and
2HDM get larger, the deviation from the SM value
for the range 4m2

� � q2 � 4m2
c for the � channel

in the mass set 2 and for the range 4m2
� � q2 �

4m2
c 0 for the � channel in the same mass set is more

than the other considered cases. For example, while
the magnitude of PLN in the SM for the � channel
in 4m2

� � q2 � 4m2
c is about 0.01 and for the �

channel in 4m2
� � q2 � 4m2

c 0 is about 0.05, it

reaches, at most, 0.35 (3400% SM) at q2 ¼ 4m2
�

for � channel and 0.28 (460% SM) at q2 ¼ 4m2
� for

the � channel in case C of the model III 2HDM in

FIG. 1. The dependence of the PLL polarization on q2 for both mass sets of Higgs bosons (mass set 1 and mass set 2) and three
typical cases of 2HDM, i.e. cases A, B, and C, and the SM for the � and � channels. Case A refers to � ¼ �=2, j�ttj ¼ 0:03, and
j�bbj ¼ 100. Case B refers to � ¼ �=2, j�ttj ¼ 0:15, and j�bbj ¼ 50. Case C refers to � ¼ �=2, j�ttj ¼ 0:3, and j�bbj ¼ 30.
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mass set 2. Also, from these plots, it is found out
that, whereas PLN around the mass of resonances
c and c 0 in the � channel and around the mass of
resonance c 0 in the � channel shows sensitivity to
the parameters of cases A, B, and C, it does not
show such sensitivity to the changes of masses of
Higgs bosons in mass set 1 and mass set 2. It is
also obvious from Tables III and IV that, except in
case A of mass set 1 for the � channel, the SM
value of hPLNi, which is in the intervals 0:014 �
hPLNi � 0:016 for the � case and 0:050 �
hPLNi � 0:085 for the � case, does not overlap
with the predictions of 2HDM for these channels.
By comparing the data of hPLNi of Table III and

IV with the data points of hPLNi plots in Ref. [6]
for SM4, it is understood that hPLNi indicates
more sensitivity to the fourth-generation para-
meters relative to the parameters of 2HDM, such
that while there is a deviation of around 3350%
SM for the � case and a deviation of around
333% SM for the � case in SM4, there exists a
deviation of around 300% SM for the � channel
and a deviation around 243% SM for the � chan-
nel in 2HDM. Also, it is clear from this article and
Ref. [25] that the deviation of PLN from SM in
2HDM is much more than that in ACDM. The
estimation of the ACDM for PLN in the � case is
at most �14% SM.

FIG. 2. The dependence of the PLN polarization on q2 for both mass sets of Higgs bosons (mass set 1 and mass set 2) and three
typical cases of 2HDM, i.e. cases A, B, and C, and the SM for the � and � channels. Case A refers to � ¼ �=2, j�ttj ¼ 0:03, and
j�bbj ¼ 100. Case B refers to � ¼ �=2, j�ttj ¼ 0:15, and j�bbj ¼ 50. Case C refers to � ¼ �=2, j�ttj ¼ 0:3, and j�bbj ¼ 30.
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(iii) Figures 3 and 4 and Tables III and IV: By compar-
ing Eqs. (28) and (29), it is found out that PLT is
symmetric under the exchange of subscripts L and
T in the SM for both the � channel and � channel,
but it is neither symmetric nor antisymmetric
under the exchange of those subscripts in 2HDM.
Moreover, it is clear from Figs. 3 and 4 that for the
� channel in case C of model III 2HDM and for the
� channel in case A of model III 2HDM, a consid-
erable discrepancy between the SM and 2HDM
predictions occurs that reaches to, at most, 48%
SM for the� case of PLT and PTL and�100% SM
and 100% SM for the � case of PLT and PTL,
respectively. Furthermore, as it is seen from these

figures, both of these asymmetries show no strong
dependency on the mass sets of Higgs bosons. It is
also obvious from Table III that in the � channel,
the 2HDM values of hPLTi and hPTLi for cases A
and C relating both mass sets of Higgs bosons
cannot interfere with the SM expectations, which
are 0:123 � hPLTi � 0:152 and 0:123 � hPTLi �
0:152. In addition, for the � channel, it is under-
stood from Table IV that the 2HDM values of hPLTi
and hPTLi for case A cannot lie in the range of SM
prediction, which is 0:093 � hPLTi � 0:187 and
0:093 � hPTLi � 0:187. From comparison of the
results of this article for the averages of PLT and
PTL in the � channel with those in Ref. [6], it is

FIG. 3. The dependence of the PLT polarization on q2 for both mass sets of Higgs bosons (mass set 1 and mass set 2) and three
typical cases of 2HDM, i.e. cases A, B, and C, and the SM for the � and � channels. Case A refers to � ¼ �=2, j�ttj ¼ 0:03, and
j�bbj ¼ 100. Case B refers to � ¼ �=2, j�ttj ¼ 0:15, and j�bbj ¼ 50. Case C refers to � ¼ �=2, j�ttj ¼ 0:3, and j�bbj ¼ 30.
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inferred that in the� channel, the fourth generation
of quarks operates more impressively than the new
Higgs bosons added to the SM so that, while the
deviation of hPLTi and hPTLi from the SM in SM4
is almost 60% SM, it reaches to 42% SM in 2HDM.
In contrast, from the similar comparison in the �
channel, it is understood that 2HDM shows consid-
erable effects on these asymmetries, such that,
while this model reduces hPLTi around 69% SM
and enhances hPTLi around 69% SM, SM4 makes
an increase of about 18% SM in the aforemen-
tioned asymmetries. It is also apparent from the
plots regarding PLT in Ref. [25] for the � channel
and � channel, compared to those for 2HDM, the

ACDM cannot cause an important difference be-
tween its predictions with that of the SM.

(iv) Figure 5 and Tables III and IV: Since only the
parameters A and B, appearing in Eq. (17), have

imaginary parts due to ~Ceff
9 , it is understood that

Eqs. (28) and (29) are antisymmetric under the
exchange of N and T in both the SM and 2HDM,
i.e. PNT ¼ �PTN . Based on this, we only study the
variations of PNT in the SM and 2HDM with
respect to q2 and 2HDM parameters. From the �
channel of Fig. 5, it is easily seen that, first, for the
whole range of 4m2

� < q2 < ðmB �mK�
0
Þ2 in both

mass sets of Higgs bosons, as j�tt�bbj and j�ttj2
increase, the difference between the magnitudes of

FIG. 4. The dependence of the PTL polarization on q2 for both mass sets of Higgs bosons (mass set 1 and mass set 2) and three
typical cases of 2HDM, i.e. cases A, B, and C, and the SM for the � and � channels. Case A refers to � ¼ �=2, j�ttj ¼ 0:03, and
j�bbj ¼ 100. Case B refers to � ¼ �=2, j�ttj ¼ 0:15, and j�bbj ¼ 50. Case C refers to � ¼ �=2, j�ttj ¼ 0:3, and j�bbj ¼ 30.
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predictions in the SM and 2HDM enhances, and,
second, this difference is more significant in the
second mass set of Higgs bosons. For example,
for the interval 4m2

� < q2 < 4m2
c, the magnitude

of PNT in the SM is approximately zero, but it
becomes a nonzero value with a negative sign in
the three cases of 2HDM (A, B and C), where
the largest variation from the SM prediction
(PNT 
 �0:4) happens in case C of mass set 2. In
addition, in the range 4m2

c < q2 < ðmB �mK�
0
Þ2,

the most variations of PNT occur around the mass
of resonances c and c 0 in case C of mass set 2, in
which the magnitudes of the off-resonance peaks
decrease to, at most, 225% SM and 156% SM,

respectively. It is also obvious from Fig. 5 for the
� channel that, for the whole range of 4m2

� < q2 <

ðmB �mK�
0
Þ2, similar to the� channel, first, in both

mass sets of Higgs bosons when j�tt�bbj and j�ttj2
increase the discrepancy between the predictions of
the SM and 2HDM enhances, and, second, this
discrepancy gets larger in mass set 2. For instance,
around the mass of resonance c 0 in case C of mass
set 2, the magnitude of the off-resonance peak
reduces to, at most, 164% SM, which is the highest
deviation of this asymmetry from the SM prediction
for the � channel. Moreover, it is evident from
Tables III and IV that, for both mass sets of Higgs
bosons, the averages of hPNTi in the � channel for

FIG. 5. The dependence of the PNT polarization on q2 for both mass sets of Higgs bosons (mass set 1 and mass set 2) and three
typical cases of 2HDM, i.e. cases A, B, and C, and the SM for the � and � channels. Case A refers to � ¼ �=2, j�ttj ¼ 0:03, and
j�bbj ¼ 100. Case B refers to � ¼ �=2, j�ttj ¼ 0:15, and j�bbj ¼ 50. Case C refers to � ¼ �=2, j�ttj ¼ 0:3, and j�bbj ¼ 30.
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the three cases, A, B, and C, and in the � channel
for cases B and C cannot overlap with the predic-
tions of the SM by considering the lower limits of
the corresponding SM uncertainties. From com-
parison of the results of this article for the aver-
ages of PNT in the � and � channels with those in
Ref. [6], it is found out that, in both channels, the
fourth generation of quarks affects more inten-
sively than the new Higgs bosons added to the
SM, such that while the SM4 lowers hPNTi by
approximately 2100% SM in the � case and
335% SM in the � case, it gets down around
1315% SM for the � channel and 257% SM for
the � channel in 2HDM. Besides, it is clear from
the plots relating PNT in Ref. [25] for the �

channel and � channel that, in comparison with
the similar plots in 2HDM, the ACDM cannot
make an intensive difference between its predic-
tions with those of the SM. This model causes an
increase of around 8% SM for the � channel and
an increase around 50% SM for the � channel.

(v) Figure 6 and Tables III and IV: As it is apparent from
these curves, though, for the second mass set of
Higgs bosons (mass set 2) and both intervals,
4m2

� � q2 � 4m2
c and 4m2

c < q2 � ðmB �mK�
0
Þ2

for the � channel and both intervals 4m2
� � q2 �

4m2
c 0 and 4m2

c 0 < q2 � ðmB �mK�
0
Þ2 for the �

channel, when j�tt�bbj and j�ttj2 increase, the dif-
ferences between the predictions of the SM and

FIG. 6. The dependence of the PNN polarization on q2 for both mass sets of Higgs bosons (mass set 1 and mass set 2) and three
typical cases of 2HDM, i.e. cases A, B, and C, and the SM for the � and � channels. Case A refers to � ¼ �=2, j�ttj ¼ 0:03, and
j�bbj ¼ 100. Case B refers to � ¼ �=2, j�ttj ¼ 0:15, and j�bbj ¼ 50. Case C refers to � ¼ �=2, j�ttj ¼ 0:3, and j�bbj ¼ 30.
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2HDM enhance; the deviation from the SM value in
the interval 4m2

� � q2 � 4m2
c for the � channel

and in the interval 4m2
� � q2 � 4m2

c 0 for the �

channel is more than the other investigated intervals.
For example, for the magnitude of PNN in case C of
model III, there exists an increase of about 400%
SM for the � channel at q2 ¼ 4m2

� and a decrease

of around 200% SM for the � channel at q2 ¼ 4m2
�.

Also, from these plots, it is evident that, although the
prediction of the SM for the range of 4m2

� � q2 �
4m2

c is negative, that of the model III 2HDM can be

positive in case C. Moreover, it is apparent from this
Figure that case C of mass set 2 causes the largest

variations from the SM prediction in the on-
resonance peaks, a reduction of around 20% SM
for the � channel and a reduction of nearly 10%
SM for the � channel. It is also obvious from
Tables III and IV that the magnitudes of hPNNi in
2HDM, except for cases B and C of mass set 2 for�
channel, lie in the range of the corresponding SM
predictions. For instance, case C of mass set 2 in the
� channel can flip the sign of this asymmetry
compared to that of the SM, which is negative.
By comparing the data of hPNNi of Table III with
the corresponding data points of the hPNNi plots in
Ref. [6] for the � channel in SM4, it is understood
that hPNNi shows more dependency on the

FIG. 7. The dependence of the PTT polarization on q2 for both mass sets of Higgs bosons (mass set 1 and mass set 2) and three
typical cases of 2HDM, i.e. cases A, B, and C, and the SM for the � and � channels. Case A refers to � ¼ �=2, j�ttj ¼ 0:03, and
j�bbj ¼ 100. Case B refers to � ¼ �=2, j�ttj ¼ 0:15, and j�bbj ¼ 50. Case C refers to � ¼ �=2, j�ttj ¼ 0:3, and j�bbj ¼ 30.

TWO-HIGGS-DOUBLET MODEL AND DOUBLE-LEPTON . . . PHYSICAL REVIEW D 85, 075008 (2012)

075008-13



fourth-generation parameters relative to the para-
meters of 2HDM; a sensitivity of around 371%
SM in SM4 and around 275% SM in 2HDM is
seen. On the other hand, it is clear from the same
comparison for the � channel that SM4 and 2HDM
affect similarly the average of PNN by raising the
SM expectations to around 45%. In addition, it is
evident from this article and Ref. [25] that the
deviation of PNN from the SM in 2HDM, which is
400% SM for the � channel and 100% SM for the �
channel, is approximately twice that in ACDM,
which is 167% SM for the � channel and 45%
SM for the � channel.

(vi) Figure 7 and Tables III and IV: It is obvious from
this figure that the dependency of PTT on q2 in the
SM and 2HDM are very similar to that of PNN in
the SM and 2HDM. However, there are also some
differences. For example, for the � channel, the
maximum deviation from the SM anticipation,
which is around 400% SM, occurs at q2 � 1 GeV.
In addition, it is seen for the � channel that PTT is
sensitive to the 2HDM parameters in both mass sets
of Higgs bosons and both ranges 4m2

� � q2 �

4m2
c 0 and 4m2

c 0 < q2 � ðmB �mK�
0
Þ2, such that,

in the first interval, case C shows the largest devia-
tions compared to the SM prediction of around 12%
SM, and, in the second interval, case A indicates the
most deviations from the SM expectation of around
�15% SM. It is also evident from Tables III and IV
that, similar to the� channel, the amounts of hPTTi
in 2HDM, except for cases B and C of mass set 2 for
the� channel, lie in the range of the corresponding
SM predictions. For instance, case C of mass set 2
in the � channel can change the sign of this asym-
metry in comparison with that of the SM, which is
negative. From comparison of the results of this
article for the averages of PTT in the � and �
channels with those in Ref. [6], it is deduced that,
in the � channel, the fourth generation of quarks
operates more effectively than the new Higgs
bosons added to the SM, such that, while the SM4
raises hPTTi by approximately 375% SM in the �
case, the 2HDM enhances this value by 222% SM
in this channel; but in the � channel, both models
behave identically and bring down hPTTi to 10%
SM. As a result, these models cannot make

TABLE IV. Same as Table III, except for B ! K�
0ð1430Þ�þ��.

SM

Case A

(Set 1)

Case B

(Set 1)

Case C

(Set 1)

Case A

(Set 2)

Case B

(Set 2)

Case C

(Set 2)

hPLLi 0:615þ0:452þ0:025
�0:175�0:029 0.649 0.603 0.600 0.655 0.638 0.741

hPLNi 0:068þ0:011þ0:006
�0:012�0:006 0.104 0.166 0.183 0.109 0.191 0.233

hPLTi 0:143þ0:017þ0:027
�0:024�0:026 0.063 0.138 0.140 0.045 0.142 0.161

hPTLi 0:143þ0:017þ0:027
�0:024�0:026 0.209 0.144 0.142 0.224 0.150 0.162

hPNTi �0:007þ0:008þ0:002
�0:003�0:002 �0:010 �0:018 �0:020 �0:011 �0:020 �0:025

hPNNi 0:455þ0:641þ0:028
�0:248�0:032 0.471 0.438 0.433 0.463 0.490 0.645

hPTTi �0:808þ0:225þ0:013
�0:087�0:015 �0:794 �0:803 �0:802 �0:780 �0:819 �0:867

TABLE III. The averaged double-lepton polarization asymmetries for B ! K�
0ð1430Þ�þ�� in the SM and 2HDM for both mass sets

of Higgs bosons (mass set 1 and mass set 2) and the three cases, A (� ¼ �=2, j�ttj ¼ 0:03 and j�bbj ¼ 100), B (� ¼ �=2, j�ttj ¼ 0:15,
and j�bbj ¼ 50), and C (� ¼ �=2, j�ttj ¼ 0:3, and j�bbj ¼ 30). The errors shown for each asymmetry are due to the theoretical and
experimental uncertainties. The first ones are related to the theoretical uncertainties, and the second ones are due to experimental
uncertainties. The theoretical uncertainties come from the hadronic uncertainties related to the form factors, and the experimental
uncertainties originate from the mass of quarks, hadrons, and Wolfenstein parameters.

SM

Case A

(Set 1)

Case B

(Set 1)

Case C

(Set 1)

Case A

(Set 2)

Case B

(Set 2)

Case C

(Set 2)

hPLLi �0:950þ0:002þ0:001
�0:003�0:001 �0:949 �0:950 �0:950 �0:948 �0:948 �0:939

hPLNi 0:016þ0:000þ0:000
�0:001�0:001 0.016 0.033 0.038 0.018 0.042 0.064

hPLTi 0:136þ0:009þ0:004
�0:013�0:003 0.116 0.132 0.132 0.111 0.146 0.194

hPTLi 0:136þ0:009þ0:004
�0:013�0:003 0.159 0.134 0.132 0.165 0.148 0.194

hPNTi �0:027þ0:001þ0:004
�0:001�0:006 �0:097 �0:197 �0:226 �0:109 �0:250 �0:382

hPNNi �0:134þ0:020þ0:018
�0:026�0:018 �0:139 �0:154 �0:161 �0:137 �0:068 0.234

hPTTi �0:156þ0:018þ0:017
�0:023�0:017 �0:161 �0:175 �0:182 �0:159 �0:094 0.191
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intensive differences between their predictions
with those of the SM in the � channel for the
averages of PTT . Besides, it is clear from the plots
relating PTT in Ref. [25] for the � channel and �
channel that, in comparison with the analogous
plots in 2HDM, the ACDM operates less effec-
tively than 2HDM in the � case so that the
ACDM prediction (180% SM) is approximately
one half that of 2HDM (400% SM), and, in the �
case, the predictions of both models are almost
the same (15% SM).

Finally, let us discuss briefly whether the lepton polar-
ization asymmetries are measurable in experiments or not.
Experimentally, for measuring an asymmetry hPiji of the
decay with branching ratio B at n� level, the required
number of events (i.e., the number of B �B) is given by the
formula

N ¼ n2

Bs1s2hPiji2
;

where s1 and s2 are the efficiencies of the leptons. The
values of the efficiencies of the � leptons differ from 50%
to 90% for their various decay modes [33], and the error in
�-lepton polarization is approximately 10–15% [34]. So,
the error in measurements of the �-lepton asymmetries is
estimated to be about 20–30%, and the error in obtaining
the number of events is about 50%.

Based on the above expression for N, in order to detect
the lepton-polarization asymmetries in the � and � chan-
nels at 3� level, the minimum number of required events
are given by (the efficiency of � lepton is considered 0.5),

(i) for B ! K�
0�

þ�� decay,

N �

8>>>>>>>>>>><
>>>>>>>>>>>:

107ð7Þ for hPLLi;
108ð8Þ for ðhPNTi; hPTNiÞ;
108ð9Þ for hPTTi;
109ð8Þ for hPNNi;
109ð9Þ for ðhPLTi; hPTLiÞ;
1010ð10Þ for ðhPLNi; hPNLiÞ;

(ii) for B ! K�
0�

þ�� decay,

N �

8>><
>>:
1010ð10Þ for ðhPLLi; hPNNi; hPTTiÞ;
1011ð11Þ for ðhPLNi; hPNLi; hPLTi; hPTLiÞ;
1013ð13Þ for ðhPNTi; hPTNiÞ:

In the above expressions, the first power refers to the
first choice of mass sets of Higgs bosons, and the second
power denotes the second choice of mass sets of Higgs
bosons. Comparison of the above values for N with the
number of produced B �B pairs at the LHC experiments,
including ATLAS, CMS, and LHCb (� 1012 per year) as

well as that number of the Super-LHC experiments
(supposed to be �1013 per year), shows that, for the �
channel, all double-lepton polarizations plus the corre-
sponding averaged asymmetries and for the � channel,
probably PLL, PNN , PTT , PLN , PNL, PLT , and PTL as
well as the corresponding averaged polarizations, can be
detected at the LHC and the Super Large Hadron
Collider (SLHC). However, such comparison for the
asymmetries PNT and PTN and their averages for the �
channel indicates that these asymmetries could be mea-
sured just at the SLHC experiments. It is worth mention-
ing that, although the muon polarization is measured for
stationary muons, such experiments will be very hard to
perform in the near future. The � polarization can be
studied by investigating the decay products of �. The
measurement of � polarization in this respect is easier
than the polarization of the muon.

IV. SUMMARY

In this paper, the sensitivity of Pij’s on the dilepton

invariant mass, q2, and the model III 2HDM parameters
for B ! K�

0‘
þ‘� decay were investigated, and the

results were compared to those of the SM and ACDM.
Also, for this decay, the effects of model III 2HDM
parameters on the averages of double-lepton polarization
asymmetries, hPiji’s, were studied, and, by taking into

account the corresponding theoretical and experimental
errors in the SM, the results of the SM and 2HDM were
compared to each other. In addition, by comparing the
averages of double-lepton polarization asymmetries in
2HDM to those of SM4, after obtaining the required
number of events for detecting each asymmetry at the
LHC or the SLHC, we presented a comprehensive
discussion regarding the lepton polarizations of B !
K�

0‘
þ‘� decay. In summary, the following conclusions

were obtained:
(i) According to the above discussions regarding the

PLL and PTT , the relevant averages, and the required
number of events at the LHC for detecting each
asymmetry, it is found that only PTT in the� channel
has a chance to show a sign of the model III 2HDM.

(ii) From the preceding parts concerning PLT , PTL,
PLN , PNL, PNN , the corresponding averages for
the � channel and � channel, and the constraints
on the number ofB �B pairs produced at the LHC, it is
obvious that all of these asymmetries can be suitable
for searching the model III 2HDM.

(iii) From the previous explanations, it is clear that,
although measuring the magnitude of PNT , PTN,
hPNTi, and hPTNi in both the � channel and �
channel can be significant for discovering new
physics, due to the required number of B �B pairs
at the LHC for sighting these asymmetries in the
� channel and � channel, only the mentioned
asymmetries in the � case are suitable for such
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achievement. However, if the SLHC starts to oper-
ate, the aforementioned asymmetries in the � case
can be helpful for such a discovery.

(iv) It is apparent from the figures that, although, in
general, all these asymmetries show more sensitiv-
ity to the masses of Higgs bosons in mass set 2 than
in those of mass set 1, in the asymmetry PNT in the
� case, compared to the others, such a discrepancy
is more evident.

(v) Our analyses regarding the asymmetries show that,
in the � case, the effects of SM4, 2HDM, and
ACDM on all asymmetries except PLL and in the �
case, only on PLN , PLT , and PNT , obey the following
arrangement: ACDM< 2HDM< SM4. For the �
case, such a relation for PTL appears as ACDM<
SM4< 2HDM; for PNN , appears as ACDM<
2HDM� SM4; and for PTT , appears as

ACDM� 2HDM� SM4, which lies in the range
of the SM prediction. This arrangement for PLL in
the� and � cases is obtained asACDM� 2HDM�
SM4� SM.

In conclusion, we have shown that the new Higgs bosons
in the general model III 2HDM with spontaneous CP
violation can show some significant effects in the double-
lepton polarization asymmetries of B ! K�

0‘
þ‘� decay,

which can be useful in the B factory experiments to test
the SM and search for new physics with more precise
measurements.
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