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Analysis of VD;,D;; and VDD vertices
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The strong form factors and coupling constants of VD¥ Dy, and VD D; (V = ¢, J/y) vertices in the
framework of the three-point QCD sum rules are considered. Taking into account the nonperturbative part
contributions of the correlation functions, the quark-quark, gluon-gluon, and quark-gluon condensate as
important terms are evaluated. Considering the SU;(3) symmetry, we compare our results with the values

obtained in other methods.

DOI: 10.1103/PhysRevD.89.016001

I. INTRODUCTION

There are various applications for the strong form factors
and coupling constants associated with vertices that involve
mesons in the QCD. To investigate meson interactions at
high-energy physics, it is very important to know the exact
functional form of the strong form factors in meson
vertices. Therefore, they have received wide attention by
researchers in the QCD.

Investigation of the strong form factors and coupling
constants related to the charmed meson vertices is much
more significant as it plays an important role in under-
standing the final state interactions in the QCD. In the
production of charmonium J/y, y(2s) and other cases that
are useful sources of information in heavy ion collisions,
there appear vertices involving charmed mesons, namely
the gppy/y> 90 Dssys a0 gppryp, [11. Also, the determi-
nation of strong coupling constants can provide a real
possibility for studying the nature of the charmed pseu-
doscalar and axial vector mesons. For example, to recog-
nize the structure of the new hadron states such as Dy, and
Dy, one can estimate the strong coupling constants for the
9p,pk and gp  px [2-4]. Until now, the vertices involving
charmed mesons such as D*D*p [5], D*Dx [6,7], DDp (8],
D*Dp [9], DDJ/y [10], D*DJ/w [11], D*D,K, D:DK,
DyD,K, DyWDK [12], D*D*P, D*DV, DDV [13], D*D*x
[14], D,D*K, D:DK [15], DDw [16], and D,D,V, D;DV
[17] have been studied within the framework of the QCD
sum rules.

The QCD sum rules have been successfully applied to a
wide variety of problems in hadron physics [18] (for details
of this method, see [19,20]). In this paper, we decide to
calculate the strong form factors and coupling constants
related to the DDy, pD D5, J /wD3 Dy, and J /wD Dj
vertices via the three-point QCD sum rules (3PSR). To
calculate the dependence of the form factors associated
with each of these vertices on the transferred momentum
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square Q2, we consider two cases: (1) when the charmed
meson is an off-shell and (2) when the ¢(J /) meson is an
off-shell. Understanding how to change the strong form
factors in terms of Q7 is essential to estimate the values of
the coupling constants.

This paper includes three sections. In Sec. II, we present
the QCD sum rules calculation for the strong form factors
of the ¢ D7Dy, vertex. In this way, we compute the quark-
quark, gluon-quark, and gluon-gluon condensate contribu-
tions in the Borel transform scheme. These are the most
important corrections of the nonperturbative part of the
correlation function in the 3PSR method. Similarly, we can
easily derive the strong form factors for the ¢D D5,
J/wD},Dy,, and J/wD Dy vertices. The next section
depicts our numerical analysis of the strong form factors
as well as the coupling constants with and without con-
sidering the SU,(3) symmetry. In this section, we also
compare our results with values obtained in other
approaches.

II. STRONG FORM FACTORS FOR
THE ¢D;,D;; VERTEX VIA 3PSR

We start with the correlation function in the 3PSR to
calculate the strong form factors associated with the
¢D7,Dy, vertex. In this vertex, both strange charmed
meson D}, and ¢ can be an off-shell meson. For the
off-shell D}, meson [see Fig. 1(a)], the correlation function
is given by

M (p. p) = 2 / d*xd*yei(P'x=p)

X (O[T {ji* (x)j207(0) 2 (»)}0). (1)
For the off-shell ¢» meson [see Fig. 1(b)], this quantity is

I (p. p') = i2 / d*xd*ye (Px=py)

x (01T {ji" (x)j2(0) 2% (y)}0),  (2)
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where jPo = 5c, j,? = Sy,ys¢, and J,, = §y,s are interpolating currents of the DY,, D, and ¢ mesons, respectively, and
have the same quantum numbers as the associated mesons. Also, 7 is the time-ordering product and p and p’ are the four
momentum of the initial and final mesons, respectively.

In the QCD sum rules approach, we can obtain the correlation functions of Egs. (1) and (2) in two languages. The hadron
language which is the physical or phenomenological side, and the quark-gluon language called the QCD or theoretical side.
In the physical or phenomenological part, the representation is in terms of hadronic degrees of freedom which is responsible
for the introduction of the form factors, decay constants, and masses. In the QCD or theoretical representation, we evaluate
the correlation functions in terms of the QCD degrees of freedom like the quark-quark, gluon-gluon, and quark-gluon
condensates, etc., using the Wilson operator product expansion (OPE).

In order to calculate the phenomenological parts of the correlatlon functions, three complete sets of intermediate states
with the same quantum numbers as the currents j, D1 jP%, and J,, should be inserted in Egs. (1) and (2) as follows:

(P, €))(01j"| Dy ())(D sl<p ¢)Dy(0)(p. €)) (b (p. €)|j¥10)

(p* - m(/))(}?/z - mD )(q* — m%)* )

(0Lji" D41 (p'. €)) (012 | Dio(p)) (D sl(p € )|Do(p)p(q.€))(¢(q.€)|j?|0)
(p* —mp. )(p* —mp, )(q* — m})

.Dy
HZ}O — <0|]ﬂ l Dsl

+ higher and continuum states,

H,‘fy =— -+ higher and continuum states.

3)

0
2
D

The matrix elements appearing in Eq. (3) are defined in the standard way in terms of strong form factor as well as the decay
constants of the D, and ¢ meson as

(Dy1(p'.€)D%(@)p(p.€)) = igpp p, (@7 er(P e, (P)Pap)ys  (01/P%|D%o) = mp: fpr, .
<0‘]ﬂ ! |DS1> - mD fD\l " <O|.](/)|¢> = m(/)f{ﬁew (4)

where g = p’ — p, 97,0 (q ) is the strong form factor, mp: mD s My, and fD* fp,» [y are the masses and the decay
constants of the DSO, Dql, qﬁ mesons, respectively. Also, € and ¢ are the polarlzatlon of the ¢p and Dy; meson, respectively.
Using Eq. (4) in Eq. (3) and after some calculations, we obtain

mp, Mp+ m¢f Dslf D;fof ¢

q* —mp. )(p* —my)(p"* —mp, )
mp , Mp+ m¢f Dslf D;Of ¢

q* —m3)(p* —mp. ) (P> —mp, )

H,?SO = —g%’tul)sl (¢°) 7 i€’ popj; + higher and continuum states,

Hfjp = —giDtoD“ (¢%) ( ie“/’””pap;, + higher and continuum states . (5)

Now, we calculate the QCD side of the correlation functions for the ¢ D}, D, vertex. To this aim, the correlation functions
containing the perturbative and nonperturbative parts are written as follows:

D*

H/w (Hper ?

+ Hnonl()er))zeaﬂ”” Pa p;j + other structures and the higher states . (6)

Using the double dispersion relation for the coefficient of the Lorentz structure i p,, p;g, which appears in the correlation
functions [Eq. (6)], we calculate the perturbative part as

“o(®)
Hper — / ds / ds’ + subtraction terms, (7)
(s—p*)(s'—p?)

where pP(?) is the spectral density. We calculate the spectral densities in terms of the usual Feynman integrals by the help
of the Cutkosky rules, where the quark propagators are replaced by Dirac-delta functions, i.e., T m7 — (=27i)8(p* — m?).
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FIG. 1. Perturbative diagrams for the off-shell D}, (a) and the
off-shell ¢p meson (b).

Figure 1 shows the perturbative loop diagrams for the
@D Dy, vertex. Using Fig. 1 and after some straightfor-
ward calculations for the structure ie®* p, pz, we have

D*
p¢1:)()jODS1 <S7 s, q2) = 7 [ABI (mc + ms) + ms]

P, (5.5, 4%) = —71 iBy(my +m) +m]. (8

where

By = s(s' — s +2m? —2m? + ¢%),
By = (s+s +2m?—2m2)g* — (s —s')?,
1= (S  — q2)2 —4ss'. )

After calculating the perturbative part, we are going to
calculate the nonperturbative part of the correlation func-
tions. In the QCD, the three-point correlation functions
can be expanded by the OPE in the deep Euclidean region,
where p?, p? = —oo, in terms of a series of local
operators. Taking into account the vacuum expectation
value of the OPE, the correlation functions in terms of local
operators with the increasing dimension are written as
follows,

P = oo ? 4 7P gq) + 7o' (Ga,Go)
5 — a aq, Do(@) /- q
+ €2 (G, TGP g) + Co' (GTqaT q)
L. (10)

where C; are the Wilson coefficients, Ggj is the gluon
field strength tensor, and I' and I" are the matrices

ey
R
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appearing in the calculations. In Eq. (10), C is related
to the contribution of the perturbative part of the
correlation functions and other terms are related to the
nonperturbative contributions of them. The important
condensate terms of dimensions three, four, and five
are related to the contributions of the quark-quark, gluon-
gluon and quark-gluon condensates, respectively. The
perturbative part contribution of the correlation functions
was discussed before. For the calculation of the non-
perturbative contributions, we only consider the important
condensate terms in each case. When the D}, meson is an
off-shell, the gluon-gluon condensate contributions can be
easily ignored. Therefore, important diagrams of dimen-
sions three and five result from the nonperturbative part
contributions. These diagrams are depicted in Fig. 2. On
the other hand, when the ¢ is an off-shell meson, the
quark-quark, and quark-gluon condensate contributions
are suppressed and the most important contribution of the
nonperturbative part comes from the gluon-gluon dia-
grams. Figure 3 shows these diagrams that are related to
the gluon-gluon condensate.

After some complicated calculations, we have obtained
the results for the important nonpertubative contributions

D',

by applylng the double Borel transformations as C,; D*

and C¢D* | for the off-shell D, and gb meson, respec—

tively. The exphclt expressions of the chs ¢D* D, and C? $D\D,,

are given in the Appendix. It should be noted that to obtain
the gluon condensate contributions, we follow the same
procedure as stated in [21].

The QCD sum rules for the strong form factors are
obtained by equating two representations of the correlation
functions and applying the double Borel transformation
with respect to the p* and p”

] n
2 _
sz(Ml)(pz_mz) =
o) (— L) = e /M
PV —m?) T T(n) (M3

on the phenomenological as well as the perturbative and
nonperturbative parts of the correlation functions in order to
suppress the contributions of the higher states and con-
tinuum. We obtain the equations for the strong form factors
as follows,

(_l)n e—mz/Mf
L(n) (MP)"°

S i

FIG. 2. Nonperturbative diagrams for the off-shell ¢ meson in the ¢pD} Dy, vertex.
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FIG. 3. Nonperturbative diagrams for the off-shell D}, meson in the ¢D;, Dy, vertex.
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9, =— elie "2 § ——— ds dsp 9. s,s', e "ie "2+ MIM5C 0. ,
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s mymp | ijOf ¢f DS,f D%,
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xeten {_W/( + )st’/ dsplpy p, (5.5.0%)e Mie M2+M%M%C$D;‘0Dn}’ (b
me+mg S
D . .
where Q% = —¢°, sOD !, 50", and sg’ are the continuum thresholds of the Dy, DY, and ¢» mesons, respectively. s, and s, are
the lower limits of the integrals over s as
f P =) (g — ) (= g
1 — s -
(m3 = q*)(mg — ') (m3 —q*)(mZ =)

Repeating the same steps as done before but for the ¢p D D¥ vertex within the 3PSR method, we can easily evaluate the
related strong form factors as

m? mZ* *
m,.+m Q2 =+ m2 ¢ Dy 1 SD: st s s
g(l;b 5 (0%) = —( ¢ S)z( D“)eM%eMi {—2 ’ ds’/ ’ dsp(l;bD*(s,s’, 0%)e Me M +M%M%C§bl)*},
D} mymp-mp, f4fp:fp, 47 Jomamy Sy, D} D
2 m?
2 2\ "bpy D} D Dy s s/
b 2 (mc + m;)(Q + m¢) w2 R 1 So ;[ 5 s PP N v} 22 g2 b
g, *(Q)Z— e’1e 2 ——— ds dS/) *(S,S,Q)e e "2+ M<M5C . P,
o ’/nlﬁ’nD;:’n%)\.fqﬁfDﬁfDJ 47° (mo+my)? 55 #D:D; 17274D,D;
(12)
where

D, 3 3
o,y (525 7)== 0B (me =) =), pi pi(s:8'.4%) = = B, = m) =],

Also, the expressions of the coefficients Cﬁi)x p: and CﬁDS p; are given in the Appendix.

Finally, we would like to provide the same results for the J/wD7,D,, and J/ywDDj vertices. With a little bit of change in
the above expressions, such as the change in the quark permutations, we can easily find similar results in Egs. (11) and (12)
for the strong form factors of the new vertices as
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B (0* + m%);o)

91)wpr D, Q%) =~
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FIG. 4. The strong form factors, gVD*

III. NUMERICAL ANALYSIS

In this section, the strong form factors and coupling
constants for the VD*,D,; and VDD (V = ¢, J /y) ver-
tices are analyzed. We choose the values of meson and
quark masses as my, = 1.020, m;,,, = 3.097, mp. = 2.318,
mp, = 1969, mp. =2112, mp =2460, m,=
0.104 GeV [22]. Also the leptonic decay constants used
inthiscalculationaretakenas f, = 0.234[23], f;/, = 0.405
(11, fp:, = 0.225[24], fp = 0.274[25], fp; = 0.266 [24],
and fp = 0.240 GeV [26] For a comprehenswe analysis,

NA " *
3 12[ m-1.26Gev D004
S c .

T 1ol A=07Gev - - -,
a *
o” . oft-shell V. | = = JYD_ P,

> *
e JyD D
N; 6 L

[0
5]
= af
22 | TTTTTTTTTTTTT T
o8|
> LA DI LA A R ekt A
>
o 0 ) ) ) ‘ ‘ ‘
10 12 14 16 18 20

M2(GeV?)

, gVD D> gVD* D , and gVD p:» as functions of the Borel mass parameter, M?*in Q? = 1 GeV?,

for the off-shell charmed mesons (left) énd the off—shell V meson (right).
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TABLE L.
Ay =0.7, and Ay = 1.0 GeV.

PHYSICAL REVIEW D 89, 016001 (2014)

Parameters appearing in the fit functions for the strong form factors in two sets and various data of A, where A; = 0.4,

Set 1 Set 11
Form factor A(Ay) B(Ay) A(4A,) B(A;) A(Az) B(A3) A(A,) B(A,)
Gon, 210.54 31.78 337.21 45.61 372.46 47.12 312.03 42.67
o, 7.13 53.60 7.78 89.44 8.76 229.10 7.06 18.52
W 84.10 25.21 85.57 21.55 88.87 19.26 81.39 17.58
@ 291 11.82 3.70 12.57 4.45 17.73 3.97 7.88
9, 144.50 29.32 247.46 42.71 519.19 77.80 59.47 17.06
9, 2.48 11.48 3.07 13.24 3.78 15.78 3.44 28.85
3 72.30 29.90 166.79 52.07 689.76 178.27 37.39 15.29
9 o 2.38 729.62 3.01 208.99 3.57 135.55 2.87 31421

we use the value of the ¢ quark mass in two sets: set I,
m, = 1.26 GeV, and set II, m,. = 1.47 GeV.

In the 3PSR calculations, the expressions for the strong
form factors also contain mathematical parameters, M % and
M%, and continuum thresholds, s¢' (m=¢,J]y, D}y, Dy,
D}, Dy;). These are mathematical objects, so the physical
quantities i.e., strong form factors and coupling constants,
should be independent of them. The values of the continuum
thresholds are taken to be s’ = (m,, + A)?, where m,), is the
meson mass. We use 0.4 GeV <A <1 GeV [27]. The
working regions for the M7 and M3 are determined by
requiring not only that the contributions of the higher states
and continuum be effectively suppressed, but also that the
contributions of the higher-dimensional operators are small.
In this work, we use the following relation between the Borel
mass parameters, M7 and M3 [5,10],

2 2
L (13)
M;  m;
where m; and m,, are the masses of the incoming and outgoing
meson, respectively. According to this relation between the

A=0.4GeV
mc=1 .26GeV

- — —A=0.7GeV
------ A=1.0GeV

Q%4(GeV?)

FIG. 5.
(right).

M? and M3, we willhave only oneindependent the Borel mass
parameter, M. We found a good stability for the sum rules in
the interval 10 GeV? < M? < 20 GeV?, in all vertices. The

Dy, Dy

50 s

dependence of the strong form factors 9vD,p,> 9vD.D:>
4 14 2 s

Wi, p,» and gy, . on the Borel mass parameter, M~ in

0%? =1 GeV?,m, = 1.26 GeV,and A = 0.7 GeV is shown
in Fig. 4.

Equation (11) shows the Q% dependence of the strong
form factors in the region where the sum rule is valid. To
extend these results to the full region, we look for para-
metrization of the form factors in such that in the validity
region of the 3PSR, this parametrization coincides with the
sum rules prediction. For the off-shell charmed mesons, our
numerical calculations show that the sufficient parametri-
zation of the form factors with respect to Q” is (Monopole
fit function)

A
6 T T A=0.4 GeV
| mC‘:’1 .26GeV — — = A=0.7GeV
...... A=1.0GeV

-2 0 2 4 6 8 10 12
Q4(GeV?)

The strong form factor, gyp p: on 0?2, in the different values of A, for the off-shell D, meson (left) and the off-shell ¢» meson
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FIG. 6. The strong form factors of each vertex on Q? for A = 0.7 and different values of m, for the off-shell ¢(J/y) and charmed

mesons.
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TABLE II. The strong coupling constants in GeV~! for
different values of m,.

Set 1 Set I

Coupling  Off-shell Off-shell

constant charmed  Off-shell ¢ charmed  Off-shell ¢
9pp,p,,  8:38+£0.54 8.03+0.79 8.36+0.53 8.22+0.83
9pD,D: 486 +£093 463+£0.69 594+£1.03 5.68+0.89
9ipypp, 663 +0.59 634+0.63 5.09+£0.48 4.80+0.45
9yp.p: 346 10.59 3.15+£0.74 3.27+0.55 2.90 £0.64
TABLE III. Parameters appearing in the fit functions for the

form factors in SU,(3) symmetry, m, = 1.26 and A = 0.7 GeV.

Form factor A B Form factor A B

Ggbp, 43241 5101 gpp, 20920 41.09
Ay 922 4490 glv, , 368 2253
Gob.p: 2610 1007 ¢}, 8961 3255
Ioo.e 308 1155 g)t,, 258 7459

TABLEIV. The strong coupling constants in GeV~" in SU(3)
symmetry for m, = 1.26 GeV.

Coupling Off-shell Off-shell
constant charmed Off-shell ¢ J/y
gD, Dy, 9474+0.60 9.824+0.85

94D, D 421+£0.82 3.934+0.62

91/wD7,D,, 5.86 £ 0.68 5.64 +£0.71
91 /wD,D: 3.12 £ 0.60 2.93 +0.63

and for the off-shell V meson, the strong form factors can
be fitted by the exponential fit function as given (Gaussian
fit function),
9(Q%) = Ae™ 0P, (15)
The values of the parameters A and B for the strong form
factors of the VD} D, and VD Dj vertices in two sets and
various data of A are given in Table L.
Figure 5 shows variation of the strong form factors,
921‘3‘ p: and gZ; p,p:» for different amounts of A(A) and B(A).
The Q? dependence of the strong form factors in two sets
and A = 0.7 is shown in Fig. 6. In this figure, the small
circles and boxes correspond to the form factors via the
3PSR calculations. As can been seen, the form factors and
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their fit functions coincide, well. Figure 6 clearly shows
intersection point of the two diagrams, for the off-shell
¢(J/y) and the off-shell charmed mesons in each plot.

The coupling constant as the value of the strong form
factor is defined at Q> = —m2, in Egs. (14) and (15), where
m,, is the mass of the off-shell meson. Considering the
uncertainties in the values of other input parameters, we
obtain the values of the strong coupling constants in two
sets shown in Table II.

For a better analysis, we want to consider the strong
coupling constants with the SU,(3) symmetry. In the
SU/(3) symmetry, the s quark mass is equal to the mass
of light quarks. Considering the SU(3) symmetry, the
values of parameters A and B for the fit form factors of the
¢D\Dyy, ¢D;D;, J/wD? Dy, and J/wD Dy vertices in
m. = 1.26 and A = 0.7 GeV can be obtained as given in
Table III. In Table IV, we present the values of the strong
coupling constants of the ¢D% Dy, ¢DDj, J/wD’ Dy,
and J/wDDj vertices via the SU;(3) symmetry.

Finally, we would like to compare our results with the
values predicted by other methods. Taking an average of
the two values of the coupling constant for the g,p p:, as
presented in Table III, we obtain 4.07 £ 0.71 GeV~!. Also,
the value of the same quantity for the g;/,p p:
is 3.03 £ 0.62 GeV~!.

In the SU(3) symmetry, the coupling constant values
for the g,pp- and g, pp+ are nearly equal to those for the
9¢p,p: and gy, p p:, respectively. This means that we have

Gopir % Gppps =407 £0.71 GeV'|

In Table V, we compare our results with those of other
approaches such as the 3PSR, the vector meson dominance
(VMD), the light-cone QCD sum rules (LCSR), and the
quark model (QM).

It should be noted that in our calculation, the main
contribution comes from the perturbative part of the strong
form factors and the contribution of the nonperturbative
part containing the quark-quark and quark-gluon diagrams
in Fig. 2, which is about 20% of the total and the gluon-
gluon contribution in Fig. 3 is about 10%.

The errors in our evaluations are estimated by the
variation of the Borel parameter M2, the variation of the
continuum thresholds, and the leptonic decay constants and
uncertainties in the values of other input parameters. The
main uncertainty comes from the continuum thresholds and
the decay constants.

TABLE V. The values of the strong coupling constants for g,pp- and g,,,pp+ via different approaches: 3PSR,

VMD, LCSR, and QM.

Coupling constant Our 3PSR VMD LCSR QM
9ppD" 4.07 £0.71 4.1109] 2.82[28] 3.56[12], 4.17[29] .
97/yDD" 3.03 £0.62 3.48[11] 4.05[30] e 8.02[31]
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To summarize, by considering the contributions of the
quark-quark, quark-gluon, and gluon-gluon condensate
corrections, we estimated the strong form factors for the
¢D}\Dy, ¢DD;, J/wD’ Dy, and J/wDDj vertices
within the 3PSR. The dependence of the strong form
factors on the transferred momentum square Q> was
plotted. We also evaluated the coupling constants of these
vertices. Detection of these strong form factors and the
coupling constants and their comparison with the phenom-
enological models like the QCD sum rules could give
useful information about strong interactions of the strange
charmed mesons.
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APPENDIX

In this appendix, the explicit expressions of the coef-

. . D* D ) b .
s0 s
ficients C‘]”D:ODH R Ct/}DSDj’ Cl/’D:oDu . and C(/)DAD;F are given by

applying the double Borel transformations,

o l(si) 6 3mgm, 3m,? + 3m,2m? B 3m.2my? + 3m* _ 2my*mg*> 3m.m,?
¢D7 Dy, 6 M12M22 M12M24 M14M22 M12M26 2M12M26 M14M24 M14M24 M14M24
2m02m02 36]21’)1“‘2 2’”02612 mozm.\'mc : M2

3mym, ?xms2

3mm;

3m* _ 3my*my’ Xe—M—‘%e—'—%
M,°M,*>  2M,°M,> '

2 3m.2mgy? 3m*

1 6
CDJ L= — T _ — J— J—
¢D,D; T ¢ <”>( M2M2 MM,* M M2 M2M,°

2 2 2 2

2my*m® 3mlmg 2mS2my’ 3¢7my

2m02q

M 2M,° M ,*M,*

2 my’mgm, 3m

MPAM* MPAM* T MMy

1

¢

6
+107)"

MM MPAM* MP*M* M ,°M,?

3’"02’%52 Ryl
3 5 X e .
2M\°M,

Chppy ——<%G2>(—1Oil(3,2,2)ms3mc2 4101, (3.2,2)m*m,> 4 101,(3,2,2)m;>m > 4+101,(3,2,2)mm *

(3.2.2)m;2m.—301,(3.2.1)m2m, +601,(1,4,1)m;2m. —201,(3.2.1)m2m. + 1015 (3,2,2)m,>m,

+607,(1.,4,1)m2m, + 101" (3,2,2)m,2m, + 201, (2.2,2)m,m,2 + 101, (3.2.1)m;m 2 +401,(2.3.1)m;m,>

—101y(3.2, 1)m,ym 2 — 201"

(3,2.2)mym,>+301,(4,1,1)m;m.> —101,(3,2,2)m > — 1014(3,2,2)m,>

+207,(3.2.1)m3+101,(2.2.2)m 3 — 101, (3,2,2)m.5 — 601, (1,4, 1)m;3 — 101”1 (3,2,2)m 3

(
(
(
—301,(4,1,1)m.3+201(3,2,2)m,3 +1014(3,.2.1)m.3> — 101,(3,1,2)m 3 —2014(2.2.2)m,3
—201,(2.2,2)m,3 =201, (2,2,2)m,3 —301y(4,1,1)m.3 — 301, (4,1, 1)m.3 +201"(3,2,2)m 3
—1019(3.1.2)m,3 +2010(3.2,2)m.3 =501, (2.2, 1)m, + 201" (2.3, 1)m, — 201" (3.2, 1)m,
+207,(1,2.2)m, +607(1.3,1)m, —201,(2,2,1)m, — 201" (3,1,2)m, —2015(2,2,1)m, + 307, (2,1,2)m,
+1007,(1,3,1)m,+101°%(3,2,2)m, — 2011 (2,2,2)m + 4010 (2,3, 1)m, +207, (1.3, 1)m,
+3015(2.2.1)m. 43011 (3,1,2)m, +2010(3.2, 1)m, + 10191 (3.2, 1)m, +201"(3,2, 1)m,
—1019%(3,2,2)m, +201 (3. 1.2)m, + 201" (2,2.2)m, +201, (2.2, 1)m, —301,(2.1,2)m,

[0.1]

+1075(3.1,1)m, +201""(2,2,2)m, —2014(1,2.2)m, —201,(1.2,2)m, + 301" (3.1,2)m. — 101, (3.1, 1)m,

[0.1]

+20791(2,2,2)m, — 101,(3.1,1)m, — 201, (2.1,2)m, — 3019 (2,1,2)m, — 1015% (3,2.2)m, + 201, (2.2, 1)m,

—201,(1,2,2)m,—101"%(3.2,2)m,),
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1 5 . . . .
CgD‘?D: =< <6::G2> (=101,(3,2,2)m.> —101,(3,2,2)m.> — 101(3,2,2)m > +101((3,2,2)m m;> +101,(3,2,2)m > m,>

+107,(3.2.2)m3m,2 —1015(3.1.2)m,3 +2019(3,2,2)m 3 + 2019 (3,2, 2)m 3 — 301, (4. 1. 1)m,2
—201,(2,2,2)m.> —101,(3,1,2)m,> +101,(3,2,1)m.> —201,(2,2,2)m > — 201, (2,2,2)m.> — 301,(4,1,1)m >
—301,(4,1,1)m3 +201°(3,2.2)m3 + 301, (4.1, 1)m2m, +201,(2,2,2)m 2m; — 101,(3.2.1)m>m,
+107,(3.2.1)m 2m, +201, (2.3, 1)m2m, +401,(2.3. 1)m.2m, + 1012 (3.2, 2)m.m,2 + 1011 (3,2, 2)m m,?
—301,(3.2.1)m,m;2 —2015(3.2. 1)mm,? + 101" (3,2, 2)mom,2 + 601, (1,4, 1) mm,* — 201, (2.3, 1)m,>
—601,(1,4,1)m3 —1011"1(3,2,2)m,3 + 107, (2.2.2)m3 4201, (3.2, 1)m,3 + 201, (2.2.1)m
+30191(3,1,2)m, —3015(2. 1,2)m, — 201, (1,2.2)m, + 2011 (2,2.2)m, — 1017 (3.2.2)m
—207,(1,2,2)m, +201""(2,2,2)m, 4+ 101,(3, 1, 1)m, — 201(1,2,2)m, — 10[1(3,1,1)mc—|—20?[10’l](3,2,1)m
+2019(3,2, 1)m, +301,(2.2. 1)m, — 10197 (3,2, 2)m, +2015(2.2. 1)m, + 3015 (3, 1.2)m,
—1019%(3.2,2)m, + 201" (3.1,2)m, + 2019 (2.2,2)m, —301,(2,1,2)m, — 101,(3.1.1)m

+107191(3,2, 1)m, — 201, (2.1,2)m, +201"Y(2,3, 1)m, + 301, (2. 1,2)m, + 101°%(3.2.2)m,

+4019(2,3, 1)m, +207, (1,2,2)m, —201(2.2. 1)m, +601,(1,3,1)m; —201"(3,2, 1)m, — 201" (2,2,2)m
+10075(1,3.1)m, — 201" (3, 1,2)m, — 501, (2,2, 1)m, — 201,(2.2, 1)m, +201,(1,3.1)my).

where (s5) = (0.8 £ 0.2)(uit), (uit) = —(0.240 £ 0.010)*> GeV? at a fixed renormalization scale of about 1 GeV [32],
(% G2) = 0.012 GeV* [19]. Also

da" d"

1@ b ) = )" o MR M3 T D).

where 71 (I=1,...,3) are defined as

( )a+b+c o e
Io(a,b,c) = 62T (@) (b)) (M3 =t (M3 Ugla+b+c—4,1—c—b),
( )a+h+c+1
(a b,c) = (M%)1_“_b+k(M%)4_“_c_kU0(a +b+c—51—c—>),

167r2F( JL(b)I(c)
where k = 1, 2. We can define the function Uy(a, ) as

oo B_
Uo(a’b):/o dy(y + M7 + M3)“y" exp —71—30—31)’ ,

where
2
m
B_| = —— (mi(M7 + M3)* — M5M7Q?), By = —5— (mi + mZ) (M7 + M3), B =—>.
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