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Abstract

The masses and decay constants of the light tensor mesons were calculated with quantum

numbers JP = 2+ in the framework of the QCD sum rules in the standard model. The non-

perturbative contributions up to dimension-5 are considered as important terms of the operator

product expansion.
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I. INTRODUCTION

In the flavor SU(3) symmetry, the light p-wave tensor mesons with the angular momen-

tum L = 1 and total spin S = 1 form an 13P2 nonet. In other words, iso-vector mesons

a2(1320), iso-doublet states K∗2(1430), and two iso-singlet mesons f2(1270) and f ′2(1525),

build the ground state nonet which has been experimentally known [1, 2]. The quark con-

tent, qq̄ for the iso-vector and iso-doublet tensor resonances is obvious. The iso-scalar tensor

states, f2(1270) and f
′
2(1525) have a mixing wave functions where mixing angle should be

small [3, 4]. Therefore, f2(1270) is primarily a (uū+ dd̄)/
√
2 state, while f ′2(1525) is domi-

nantly ss̄ [5].

Studying the light tensor mesons properties can be useful for understanding the QCD in

low energy. In this work, an attempt was made to consider masses and decay constants of

the light tensor mesons via the QCD sum rules (SR). The SR has been successfully applied

to a wide variety of problems in hadron physics (for details of this method, see [6, 7]). In this

method, calculation starts with correlation function investigated in two phenomenological

and theoretical sides. The computation of the theoretical part of the correlation function via

the operator product expansion (OPE) consists of two perturbative and non-perturbative

parts, the last part of which is called condensate contributions. The condensate term of

dimension-3 is related to the contribution of the quark-quark condensate and dimension-4

and 5 are connected to the gluon-gluon and gluon-quark condensate, respectively. After

the two sides of correlation function, the phenomenological and theoretical, are equated,

and the Borel transformation is applied to suppress the contribution of the higher states

and continuum, the physical quantities are estimated.

The masses and decay constants of the light tensor mesons have been calculated in the

framework of the SR using different approaches [5, 8–10]. In addition, several studies have

derived decay constant of f2 from the measurement of Γ(f2 → ππ) [11, 12]. In the present

study a new approach is used in that an attempt was made to calculate the masses and

decay constants of the light tensor mesons by extracting the Wilson coefficients C(0), and

C(3) related to the bare loop and quark-quark correction, respectively. Our results for the

masses and decay constants of the light tensor mesons are in consistent agreement with the

mass experimental values and decay constant predictions made using other methods. The

obtained results for the masses and decay constants can be used to calculate the magnetic
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dipole moments of the light tensor mesons [13].

This paper includes three sections. In section II, the method of the SR for the calculation

of the masses and decay constants of the light tensor mesons are presented. Section III

is devoted to the numerical analysis of the masses and decay constants as well as their

comparison with the experimental data and predicted values by other methods.

II. THE METHOD

The computation of the decay constants and masses of the tensor mesons using the

two-point QCD sum rules, starts with the correlation function as

Πµναβ = i

∫
d4xeiq(x−y) ⟨0|T [jµν(x)j†αβ(y)] |0⟩, (1)

the current jµν , responsible for the production of the tensor meson from the QCD vacuum,

is:

jµν(x) =
i

2

[
q̄1(x)γµ

↔
Dν (x)q2(x) + q̄1(x)γν

↔
Dµ (x)q2(x)

]
, (2)

where q1 and q2 are wave functions related to two quarks composing the tensor meson. Also

↔
Dµ (x) =

1

2

[→
Dµ (x)−

←
Dµ (x)

]
,

→
Dµ (x) =

→
∂µ (x)− i

g

2
λaAa

µ(x),

←
Dµ (x) =

←
∂µ (x) + i

g

2
λaAa

µ(x),

λa(a = 1, ..., 8) are the Gell-man matrixes andAa
µ(x) are the external (vacuum) gluon fields.

In Fock-Schwinger gauge, xµAa
µ(x) = 0.

As noted, the correlation function is a complex function of which the imaginary part

comprises the computations of the phenomenology and real part comprises the computa-

tions of the theoretical part (QCD). By linking these two parts via the dispersion relation

as

Π(q2) =
1

π

∫
ImΠ(s)

s− q2
ds, (3)

the physical quantities such as the decay constants and masses of the tensor mesons are

calculated. A complete set of the quantum states of mesons is inserted in the correlation

function (Eq.(1)) to compute the phenomenology part of the correlation function. After
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performing integral over x and separating the contribution of the higher states and contin-

uum and opting y = 0, we obtain:

Πµναβ =
⟨0| jµν |T (q)⟩ ⟨T (q)| jαβ |0⟩

m2
T − q2

+ higher states and continuum, (4)

where mT is the mass of the tensor meson T . The matrix elements of Eq. (4) can be defined

as follows [8, 14]:

⟨0|jµν |T (q)⟩ = fT m
3
T εµν , (5)

where fT and εµν are the decay constant and polarization of the tensor meson, respectively.

Inserting Eq. (5) into Eq. (4) and using the relation

εµνεαβ =
1

2
TµαTνβ +

1

2
TµβTνα − 1

3
TµνTαβ,

where Tµν = −gµν + qµqν
m2

T
, and choosing a suitable independent tensor structure, we obtain:

Πµναβ =

{
1

2
(gµαgνβ + gµβgνα)

f 2
T m

6
T

m2
T − q2

+ other structures

}
+ higher states. (6)

In QCD, the correlation function can be evaluated by the operator product expansion

(OPE), in the deep Euclidean region, as

ΠQCD
µναβ = C

(0)
µναβ + ⟨0|q̄q|0⟩C(3)

µναβ + ⟨0|Ga
φλG

φλ
a |0⟩C(4)

µναβ + ⟨0|q̄ σφλT aGφλ
a q|0⟩C(5)

µναβ + ...,

where C
(i)
µναβ are the Wilson coefficients, q̄ is the local fermion filed operator of the light

quark and Ga
φλ is the gluon strength tensor. The Wilson coefficients are determined by

the contribution of the bare-loop, and power corrections coming from the quark-gluon

condensates of dimension-3, 4 and higher dimensions. The diagrams corresponding to the

perturbative (bare loop), and non-perturbative part contributions up to dimension-5 are

depicted in Fig. 1.

The portion of the perturbative part (Fig 1-(a)), is computed by using the Feynman

rules for the bare loop:

C
(0)
µναβ = Pµναβ + Pµνβα + Pνµαβ + Pνµβα, (7)

where

Pµναβ = − i

4

∫
d4x eiqx Tr

[
Sq1(y − x)γµ

↔
Dν (x)Sq2(x− y)γα

↔
Dβ (y)

]
|y=0

. (8)
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FIG. 1: The Fynnmans graphs corresponding to the perturbative (a), and non-perturbative part

contributions (b,...,p), up to dimension-5.

Taking the partial derivative with respect to x and y of the light quark free propagators,

and performing the Fourier transformation and using the Cutkosky rules, i.e., 1
p2−m2 →

−2iπδ(p2 −m2), imaginary part of the Pµναβ is calculated as

Im(Pµναβ) = − 1

(8π)2

∫
d4k δ(k2 −m2

1)δ((q + k)2 −m2
2) (qνqβ + 2qνkβ + 2kνqβ + 4kνkβ)

× Tr [( ̸ k +m1)γµ(̸ q+ ̸ k +m2)γα] , (9)

where q is the four-momentum of the tensor meson, m1 and m2 are the masses of the two

quarks q1, and q2, respectively. To solve the integral in Eq. (9), we will have to deal with

the integrals as Iµν... =
∫
d4k [kµkν ...]δ(k

2−m2
1)δ((q+k)

2−m2
2). Each integral can be taken

as an appropriate tensor structure of the qµ, qν and gµν as

I0 =
π

2s

√
λ(s,m2

1,m
2
2),

Iµ = A(qµ),

Iµν = B1(gµν) +B2(qµqν),

Iµνα = C1(qµqνqα) + C2(qµgνα + qνgµα + qαgµν),

Iµναβ = E1(qµqνqαqβ) + E2(gµνgαβ + gµαgνβ + gµβgνα) + E3(qµqνgαβ + qµqαgνβ + qµqβgνα

+ qαqβgµν + qαqνgµβ + qνqβgαµ), (10)
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where s = q2. The quantities of the coefficient λ(s,m2
1,m

2
2), A, Bi, Ci, i = 1, 2, and

Ej, j = 1, ..., 3, are stated in the appendix. By computing the trace realized in Eq. (9) and

using the relations in Eq. (10) and dispersion relation (to calculate the real part from the

imaginary), the perturbative part contribution of the correlation function, for the suitable

structure corresponding to Eq. (6), can be shown as follows:

C
(0)
µναβ =

1

16π3
(gµαgνβ + gµβgνα)

∫ ∞
0

ψ(s)

s− q2
ds+ other structures,

ψ(s) = B1(m1 −m2)
2 −B1s− 8E2. (11)

Now, the condensate terms of dimension 3, 4 and 5 are considered. The non-perturbative

part contains the quark and gluon condensate diagrams. The calculations show that the

important contribution comes from dimension-3 related to Fig 1-(b) and (c). The remaining

contributions are either zero such as (d) to (i), or so small in comparison with the contribu-

tions of dimension-3 that, could be easily ignored such as (j) to (p). It should be reminded

that in the SR method, when the light quark is a spectator, the gluon-gluon condensate

contributions are very small [15]. The computation of the QCD part of the correlation

function is continued by extracting Wilson coefficient C(3) corresponding to the Feynman

graphs (b) and (c). For Fig. 1-(b), there is:

C
(3),b
µναβ = Nµναβ +Nµνβα +Nνµαβ +Nνµβα, (12)

where

Nµναβ = − i

4

∫
d4x eiqx⟨0|q̄1ρ(x)

[
γµ
↔
Dν (x)Sq2(x− y)γα

↔
Dβ (y)

]
ρσ
q1σ(y)|0⟩

|y=0

. (13)

To extract the Nµναβ, we can expand q1(x) around the origin as follows:

q1(x) = q1(0) + xξ
→
Dξ q1(0) +

1

2
xξxξ

′ →
Dξ

→
Dξ′ q1(0) + . . . .

It should be noted that the Wilson coefficients are evaluated in the deep Euclidean region

(x− y ≪ 1), and y is chosen as the origin in our calculations, therefore x ≪ 1. Hence, we

include only the first term of this expansion in Eq. (13). Additionally, using the definition

for the following matrix elements as

⟨0|q̄1ρ(0)q1σ(0)|0⟩ =
1

4
δρσ⟨0|q̄1q1|0⟩,

⟨0|q̄1ρ(0)
→
Dµ q1σ(0)|0⟩ = −im1

16
(γµ)ρσ⟨0|q̄1q1|0⟩,

⟨0|q̄1ρ(0)
←
Dµ

→
Dν q1σ(0)|0⟩ =

1

16
(
m2

0

2
−m2

1)(gµν)ρσ⟨0|q̄1q1|0⟩,
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and after some calculations, we obtain:

C
(3),b
µναβ =

1

16
(gµαgνβ + gµβgνα)

κ⟨0|q̄1q1|0⟩
q2 −m2

2

+ other structures,

where κ = m2(m
2
1 −

m2
0

2
) and m2

0(1GeV ) = (0.8± 0.2)GeV 2 [16]. After similar calculations

for Fig 1-(c), the final result for the non-perturbative contributions, C
(3)
µναβ is obtained as

follows:

C
(3)
µναβ =

1

16
(gµαgνβ + gµβgνα)

(
κ⟨0|q̄1q1|0⟩
q2 −m2

2

+
κ′⟨0|q̄2q2|0⟩
q2 −m2

1

)
+ other structures, (14)

where κ′ = m1(m
2
2 −

m2
0

2
).

Now, equating the two phenomenology part, Eq .(6), and QCD part, Eqs .(11) and (14),

of the correlation function as well as applying the Borel transformation

B̂M2(q2)
1

m2 − q2
=

1

M2
e−

m2

M2 ,

to both sides, the decay constant of the tensor meson is computed as

f 2
T =

em
2
T /M2

8 m6
T

{
3

π3

∫ sT

0

ψ(s)e−s/M
2

ds − κ⟨0|q̄1q1|0⟩e−m
2
2/M

2 − κ′⟨0|q̄2q2|0⟩e−m
2
1/M

2
}
,

(15)

where sT is the continuum threshold of the tensor meson. In the above equation, the quark-

hadron duality assumption is also used to subtract the contributions of the higher states

and the continuum. In other words, it is assumed that [15]:

higher states ≃ 1

π

∫ ∞
sT

ρOPE

s− q2
ds, (16)

where ρOPE = 3
8π2ψ(s). In fact ρOPE is related to the Wilson coefficient C

(0)
µναβ.

Furthermore, by applying derivation to both sides of Eq. (15) in term of M2, the mass

of the tensor meson is obtained as

m2
T =

3
π3

∫ sT
0
s ψ(s)e−s/M

2
ds− κ⟨0|q̄1q1|0⟩ m2

2e
−m2

2/M
2 − κ′⟨0|q̄2q2|0⟩ m2

1e
−m2

1/M
2

3
π3

∫ sT
0
ψ(s)e−s/M2ds− κ⟨0|q̄1q1|0⟩e−m

2
2/M

2 − κ′⟨0|q̄2q2|0⟩e−m
2
1/M

2
. (17)

III. NUMERICAL ANALYSIS AND CONCLUSION

In this section, Eqs. (15) and (17) are used to compute the masses and decay constants

for the four light tensor mesons K∗2(1430), a2(1320), f2(1270), and f
′
2(1525). To this aim,
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FIG. 2: The dependence of the tensor meson masses on the Borel parameter M2 (left). The same

as it but for the decay constants (right).

we need to insert the parameters sT and the light quark masses in these equations. The

masses of u and d quarks can be numerically neglected. The mass of the s quark, at the scale

1 GeV , is: ms = 142 MeV [17]. The continuum threshold sT is correlated with the energy

of the first excited state of the tensor meson under consideration. In this study, the value of

the continuum threshold is considered to be sT = (mT+∆)2 GeV 2, where ∆ = (0.20−0.30).

Also ⟨0|s̄s|0⟩ = (0.8± 0.2)⟨0|ūu|0⟩, ⟨0|ūu|0⟩ = ⟨0|d̄d|0⟩ = −(0.240± 0.010 GeV )3 in which

the value of the condensates are chosen at a fixed renormalization scale of about 1 GeV

[18].

The expressions for the mass and decay constant in Eqs .(15) and (17) contain also

the Borel mass square M2 that is not physical quantity. The physical quantities, mass and

decay constant, should be independent of the parameterM2. The dependence of the masses

and decay constants of the tensor mesons on M2 is shown in Fig. 2. As can be seen from

the following graphs, in our analysis, the dependence of the masses and the decay constants

on the Broel parameter is insignificant in the region 1.5 GeV 2 ≤M2 ≤ 2.5 GeV 2.

The results of our analysis for the masses of the tensor mesons for different values of ∆

and M2 = 2, are given in Table I. This table contains also the experimental quantities of

the mass of the light tensor mesons. As shown, the values for ∆2 = 0.25 GeV are in very

good agreement with the experimental values.

In Table II, obtained results for the decay constants of the tensor mesons for different
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TABLE I: Comparison of the light tensor meson masses in this work for various ∆, where ∆1 =

0.20 GeV,∆2 = 0.25 GeV,∆3 = 0.30 GeV , with the experimental values in GeV .

Mass mT (∆1) mT (∆2) mT (∆3) EXP [19]

mK∗
2

1.39± 0.22 1.42± 0.31 1.46± 0.42 1.43

ma2 1.28± 0.21 1.31± 0.30 1.35± 0.41 1.32

mf2 1.25± 0.21 1.28± 0.30 1.35± 0.41 1.28

mf ′
2

1.49± 0.23 1.52± 0.33 1.55± 0.45 1.53

values of ∆ and M2 = 2, as well as the obtained results via other ways in the framework of

the SR are presented. It should be noted that the decay constant fT defined in [5, 10] differs

from those obtained in this study by a factor of 1/(2mT ). Therefore, their values have been

rescaled and then presented in Table II. The results derived in this study, especially for

TABLE II: Comparison of the decay constant values of the tensor mesons in this work for various

∆, where ∆1 = 0.20 GeV,∆2 = 0.25 GeV,∆3 = 0.30 GeV , with the values obtained by others (in

units of 10−3).

Decay Constant fT (∆1) fT (∆2) fT (∆3) [5] [9] [8] [10]

fK∗
2

34± 3 36± 4 39± 5 41 50 — —

fa2 34± 3 37± 4 40± 5 41 — — —

ff2 35± 3 38± 4 41± 6 40 — 40 52− 72

ff ′
2

33± 2 35± 3 37± 4 42 — — 37− 50

∆3 = 0.30 GeV , are in consistent agreement with other values.

The errors are estimated by the variation of the Borel parameter M2, the variation of

the continuum threshold sT , and uncertainties in the values of the other input parameters.

The main uncertainty comes from the continuum thresholds of the central value, while the

other uncertainties are small, constituting a few percent.
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Appendix

In this appendix, the explicit expressions of the coefficients λ(s,m2
1,m

2
2), A(s,m

2
1,m

2
2),

Bi(s,m
2
1,m

2
2), Ci(s,m

2
1,m

2
2), i = 1, 2, and Ej(s,m

2
1,m

2
2), j = 1, ..., 3 are given.

λ(s,m2
1,m

2
2) = (s−m2

1 −m2
2)

2 − 4m2
1m

2
2, ∆ = s+m2

1 −m2
2,

A = −∆

2s
I0, B1 =

I0
3s

(
m2

1s−
∆2

4

)
,

B2 =
I0
s

[
m2

1 +
4

3s

(
∆2

4
−m2

1s

)]
, C1 =

∆I0
s3

[
1

22

(
∆2

4
+m2

1s

)
− ∆2

8

]
,

C2 =
∆I0
22s2

(
∆2

4
−m2

1s

)
, E1 = I0

(
∆4

12s4
− ∆2m2

1

8s3

)
,

E2 =
m2

1I0
36

(
m2

1 −
∆2

4s

)
, E3 = − I0

72

(
∆4

4s3
+
m4

1

s
+

5

4

∆2m2
1

s2

)
.
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