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Abstract

We analyze the semileptonic B → a1ℓ
+ℓ−, ℓ = τ, µ, e transitions in the frame work of the

three-point QCD sum rules in the standard model. These rare decays governed by flavor-changing

neutral current transition of b → d. Considering the quark condensate contributions, the relevant

form factors as well as the branching fractions of these transitions are calculated.
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I. INTRODUCTION

The decays governed by flavor-changing neutral current (FCNC) transitions are very

sensitive to the gauge structure of the standard model (SM) which provide an excellent way

to test such a model. These decays, prohibited at the tree-level, take place at loop level

by electroweak penguin and weak box diagrams. The FCNC transitions can be suppressed

due to their proportionality to the small Cabibbo-Kobayashi-Maskawa matrix elements (for

instance see [1]). Among these, the FCNC semileptonic decays of the B meson occupy a

special place in both experimental measurements and theoretical studies for the precision

test of the SM due to more simplicity.

So far, the form factors of the semileptonic decay B → a1ℓν have been studied via

the different approaches such as the covariant light front quark model (LFQM) [2], the

constituent quark-meson model (CQM) [3], the light cone QCD sum rules (LCSR) [4], and

the QCD sum rules (SR) [5]. However, the obtained results of these methods are different

from each other.

In this work, we calculate the transition form factors of the FCNC semileptonic decays

B → a1(1260)ℓ
+ℓ−/νν̄ in the framework of the three-point QCD sum rules method (3PSR).

Considering the transition form factors for such decays in the framework of different theo-

retical methods has two-fold importance:

1) A number of the physical observables such as branching ratio, the forward-backward

asymmetry and lepton polarization asymmetry, which have important roles in testing the

SM and searching for new physics beyond the SM, could be investigated.

2) These form factors can be also used to determine the factorization of amplitudes in

the non-leptonic two-body decays.

On the other hand, any experimental measurements of the present quantities and a

comparison with the theoretical predictions can give valuable information about the FCNC

transitions and strong interactions in B → a1ℓ
+ℓ−/νν̄ decays.

The plan of the present paper is as follows: In Sec. II, we describe the sum rules method

to calculate the form factors of the FCNC B → a1 transition. Section III is devoted to

the numerical analysis of the form factors and branching ratio values of the semileptonic

B → a1 decays, with and without the long-distance (LD) effects.
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II. FORM FACTORS OF THE FCNC B → a1 TRANSITION IN 3PSR

In the SM, the rare semileptonic decays which occur via b → d ℓ+ℓ− transition is de-

scribed by the effective Hamiltonian as [6]:

Heff = −GF√
2
VtbV

∗
td

10∑
i=1

Ci(µ)Oi(µ) . (1)

where Vtb and Vtd are the elements of the CKM matrix, and Ci(µ) are the Wilson coeffi-

cients. It should be noted that the CKM-suppressed contributions proportional to VubV
∗
ud

is neglected, also the approximation |VtbV ∗
td| ≃ |VcbV ∗

cd| is adopted [7]. The standard set of

the local operators for b→ dℓ+ℓ− transition is written as [8]:

O1 = (d̄icj)V−A, (c̄jbi)V−A, O2 = (d̄c)V−A(c̄b)V−A,

O3 = (d̄b)V−A
∑

q(q̄q)V−A, O4 = (d̄ibj)V−A
∑

q(q̄jqi)V−A,

O5 = (d̄b)V−A
∑

q(q̄q)V+A, O6 = (d̄ibj)V−A
∑

q(q̄jqi)V+A,

O7 =
e

8π2mb(d̄σ
µν(1 + γ5)b)Fµν , O8 =

g
8π2mb(d̄iσ

µν(1 + γ5)Tijbj)Gµν ,

O9 =
e

8π2 (d̄b)V−A(l̄l)V , O10 =
e

8π2 (d̄b)V−A(l̄l)A

(2)

where Gµν and Fµν are the gluon and photon field strengths, respectively; Tij are the

generators of the SU(3) color group; i and j denote color indices. Labels (V ±A) stand for

γµ(1± γ5). O1,2 are current-current operators, O3−6 are QCD penguin operators, O7,8 are

magnetic penguin operators, and O9,10 are semileptonic electroweak penguin operators.

The most relevant contributions to B → a1ℓ
+ℓ− transitions are given by the O7 and

O9,10, short distance (SD) contributions, as well as the tree-level four quark operators

O1,2 which have sizeable Wilson coefficients. The current-current operators O1,2 involves

an intermediate charm-loop, LD contributions, coupled to the lepton pair via the virtual

photon (see Fig. 1). This contribution has got the same form factor dependence as C9 and

can therefore be absorbed into an effective Wilson coefficient Ceff
9 [9].

Therefore, the effective Hamiltonian for B → a1ℓ
+ℓ− decays which occur via b→ dℓ+ℓ−

loop transition can be written as:

Heff =
GFα

2
√
2π
VtbV

∗
td

[
Ceff

9 dγµ(1− γ5)b lγµl + C10dγµ(1− γ5)b lγµγ5l

− 2Ceff
7

mb

q2
d iσµνq

ν(1 + γ5)b lγµl

]
, (3)
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FIG. 1: (a) and (b) O7 and O9,10 short distance contributions. (c) O1,2 long distance charm-loop

contribution.

where Ceff
7 = C7 − C5/3− C6. The effective Wilson coefficients Ceff

9 (q2), are given as

Ceff
9 (q2) = C9 + Y (q2) . (4)

The function Y (q2) contains the LD contributions coming from the real cc̄ intermediate

states called charmonium resonances. Two resonances, J/ψ and ψ′, are narrow and the last

four resonances, ψ(3370), ψ(4040), ψ(4160) and ψ(4415), are above the DD̄-threshold and

as a consequence the width is much larger. The explicit expressions of the Y (q2) can be

found in [9] (see also [8, 10]).

To calculate the form factors of the FCNC B → a1 transition, within 3PSR method,

we start with the following correlation functions constructed from the transition currents

JV−A
µ = d̄γµ(1− γ5)b and J

T
µ = d̄ iσµηq

η(1 + γ5)b as follows:

ΠV−A (T )
µν (p2, p′2, q2) =

∫
d4xd4ye−ipxeip

′y⟨0 | T [Ja1ν (y)JV−A (T )
µ (0)JB

†
(x)] | 0⟩ , (5)

where JB = ūγ5b, and J
a1
ν = ūγνγ5d are the interpolating currents of the initial and final

meson states, respectively. In the QCD sum rules approach, we can obtain the correlation

functions of Eq. (5) in two languages: the hadron language, which is the physical or

phenomenological side, and the quark-gluon language called the QCD or theoretical side.

Equating two sides and applying the double Borel transformations with respect to the

momentum of the initial and final states to suppress the contribution of the higher states and

continuum, we get sum rule expressions for our form factors. To drive the phenomenological

part, two complete sets of intermediate states with the same quantum numbers as the

currents Ja1ν and JB are inserted in Eq. (5). As a result of this procedure ,

ΠV−A (T )
µν (p, p′) =

1

p2 −m2
B

1

p′2 −m2
a1

⟨0|Ja1ν |a1⟩⟨a1|JV−A (T )
µ |B⟩⟨B|JB†|0⟩+ higher states ,

(6)
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where p and p′ are the momentum of the initial and final meson states, respectively. To get

the transition matrix elements of the B → a1 with various quark models, we parameterize

them in terms of the relevant form factors as

⟨a1(p′, ϵ) | JV−A
µ | B(p)⟩ =

1

mB +ma1

[
2A(q2) iεµλαβϵ

∗λpαp′β + V1(q
2)(P.q)ϵ∗µ

+ V2(q
2) (ϵ∗.p)Pµ + V0(q

2) (ϵ∗.p)qµ
]
,

⟨a1(p′, ϵ) | JTµ | B(p)⟩ = 2 T1(q
2) iεµλαβϵ

∗λpαp′β + T2(q
2)(m2

B −m2
a1
)

[
ϵ∗µ −

1

q2
(ϵ∗.q)qµ

]
+ T3(q

2) (ϵ∗.p)

[
Pµ −

1

q2
(P.p)qµ

]
, (7)

where P = p + p′ and q = p − p′. Also ma1 and ϵ are the mass and the four-polarization

vector of the a1 meson. The vacuum-to-meson transition matrix elements are defined in

standard way, namely

⟨0|JB|B⟩ = −ifB
m2
B

mb

, ⟨0|Ja1ν |a1⟩ = fa1ma1ϵν . (8)

Using Eq. (7), and Eq. (8) in Eq. (6), and performing summation over the polarization of

the a1 meson, we obtain

ΠV−A
µν =

fBm
2
B

mb

fa1ma1

(p2 −m2
B)(p

′2 −m2
a1
)
×
[

2A

mB +ma1

(q2) εµναβp
αp′β − iV1(q

2) (mB −ma1) gµν

−i V2(q
2)

mB +ma1

Pµpν − i
V0(q

2)

mB +ma1

qµpν

]
+ excited states ,

ΠT
µν =

fBm
2
B

mb

fa1ma1

(p2 −m2
B)(p

′2 −m2
a1
)
×
[
2T1(q

2) εµναβp
αp′β − iT2(q

2) (m2
B −m2

a1
) gµν

−i T3(q2)Pµpν
]
+ excited states . (9)

To calculate the form factors A, Vi(i = 0, 1, 2), and Tj(j = 1, 2, 3), we will choose the

structures εµναβp
αp′β, gµν , Pµpν , qµpν , from ΠV−A

µν and εµναβp
αp′β, gµν , and Pµpν from ΠT

µν ,

respectively. For simplicity, the correlations are written as

ΠV−A
µν (p2, p′2, q2) = ΠV−A

A εµναβp
αp′β − iΠV−A

1 gµν − iΠV−A
2 Pµpν − iΠV−A

0 qµpν + · · · ,

ΠT
µν(p

2, p′2, q2) = ΠT
1 εµναβp

αp′β − iΠT
2 gµν − iΠT

3 Pµpν + · · · . (10)

Now, we consider the theoretical part of the sum rules. For this aim, each Π
V−A (T )
k

function is defined in terms of the perturbative and nonperturbative parts as

ΠV−A (T )(p2, p′2, q2) = ΠV−A (T )
per (p2, p′2, q2) + ΠV−A (T )

nonper (p2, p′2, q2) . (11)
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For the perturbative part, the bare-loop diagrams are considered. With the help of the

double dispersion representation, the bare-loop contribution is written as

ΠV−A (T )
per = − 1

(2π)2

∫
ds′

∫
ds
ρV−A (T )(s, s′, q2)

(s− p2)(s′ − p′2)
+ subtraction terms ,

where ρ is spectral density. The spectral density is obtained from the usual Feynman

integral for the bare-loop by replacing 1
p2−m2 → −2πiδ(p2−m2). After standard calculations

for the spectral densities ρ
V−A (T )
k , where k is related to each structure in Eq. (10), we have

ρV−A
A = 3 s′ Λ−3 (u− 2∆)mb ,

ρV−A
0 = −3

2
s′ Λ−5

(
12u∆ s′ − 4 ss′

2 − 2u2s′ − 12 s′∆2− 2 sus′ − 6u∆2 −u3+6u2∆
)
mb ,

ρV−A
1 = −3

2
s′ Λ−3

(
2 ss′ − 2∆2 + 2∆u− u2

)
mb ,

ρV−A
2 = −3

2
s′ Λ−5

(
12u∆ s′ − 4 ss′

2 − 2u2s′ − 12 s′∆2+2 sus′+6 u∆2 +u3− 6u2∆
)
mb ,

ρT1 = −3 s′ Λ−3 (u− 2∆)m2
b ,

ρT2 =
3

2
s′ Λ−3

(
2 s2s′ − 2 s∆2 + 2 s∆u− su2 − 4 ss′ ∆+ sus′ + u∆2

)
,

ρT3 =
3

2
s′ Λ−5

(
4 s2s ′

2
+ 2us2s ′ + 6 sus ′

2 − 8 ss ′
2
∆+ 8∆uss ′ − 4 ss ′ ∆2 − 7 su2s ′ + su3

− 6 su2∆+ 6 su∆2 + 6u∆2s ′ − 4u2∆ s ′ + 4∆u3 − 5u2∆2
)
, (12)

where u = s+ s′ − q2, Λ =
√
u2 − 4ss′, and ∆ = s−m2

b .

Now, the nonperturbative part contributions to the correlation functions are discussed

(Eq. (11)). In QCD, the three point correlation function can be evaluated by the operator

product expansion (OPE) in the deep Euclidean region. Up to dimension 6, the opera-

tors are determined by the contribution of the bare-loop, and power corrections coming

from dimension-3 ⟨ψ̄ψ⟩, dimension-4 ⟨G2⟩, dimension-5 m2
0⟨ψ̄ψ⟩, and dimension-6 ⟨ψ̄ψ⟩2

operators [5]. The bare-loop diagrams, perturbative part of the correlation functions, are

discussed before. For the nonperturbative part contributions, our calculations show that

the contributions coming from ⟨G2⟩ and ⟨ψ̄ψ⟩2 are very small in comparison with the contri-

butions of dimension-3 and 5 that, their contributions can be easily ignored. We introduce

the nonperturbative part contributions as

ΠV−A (T )
nonper = ⟨uū⟩CV−A (T ) , (13)

where ⟨uū⟩ = −(0.240 ± 0.010)3 GeV3 [11]. After some straightforward calculations, the
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explicit expressions for C
V−A (T )
k , are given as

CV−A
A =

1

rr′
−m2

0

[
1

3r2r′
+
m2
b − q2

3r2r′2
+

m2
b

2r3r′

]
,

CV−A
0 =

1

rr′
−m2

0

[
1

r2r′
+
m2
b − q2

3r2r′2
+

m2
b

2r3r′

]
,

CV−A
1 =

(m2
b − q2)

2rr′
−m2

0

[
− 1

6rr′
+
m2
b − q2

6rr′2
+

3m2
b − 4q2

12r2r′
+

(m2
b − q2)2

6r2r′2
+
m4
b −m2

bq
2

4r3r′

]
,

CV−A
2 = − 1

rr′
−m2

0

[
1

3r2r′
− m2

b − q2

3r2r′2
− m2

b

2r3r′

]
,

CT
1 = −mb

rr′
−m2

0

[
− mb

2r2r′
− mb(m

2
b − q2)

3r2r′2
− m3

b

2r3r′

]
,

CT
2 =

(−m3
b +mbq

2)

2rr′
−m2

0

[
− mb

4rr′
− mb(m

2
b − q2)

6rr′2
− mb(4m

2
b − 5q2)

12r2r′
− mb(m

2
b − q2)2

6r2r′2

− m5
b −m3

bq
2

4r3r′

]
,

CT
3 =

mb

2rr′
−m2

0

[
2mb

3r2r′
+
mb(m

2
b − q2)

8r2r′2
+

m3
b

4r3r′

]
, (14)

where r = p2 −m2
b , r

′ = p′2, and m2
0 = (0.8± 0.2)GeV2 [11].

The next step is to apply the Borel transformations as

Bp2(M
2)(

1

p2 −m2
)n =

(−1)n

Γ(n)

e−m
2/M2

(M2)n
, (15)

with respect to the p2(p2 →M2
1 ) and p

′2(p′2 →M2
2 ) on the phenomenological as well as the

perturbative and nonperturbative parts of the correlation functions and equate these two

representations of the correlations. The following sum rules for the form factors are derived

A′(V ′
i )(q

2) = − mb

fBm2
Bfa1ma1

em
2
B/M

2
1 em

2
a1
/M2

2 ×

{
− 1

4π2

∫ s′0

0

ds′
∫ s0

sL

dsρV−A
A(i) e

−s/M2
1 e−s

′/M2
2

+ ⟨uū⟩ ×Bp2(M
2
1 )Bp′2(M

2
2 )C

V−A
A(i)

}
,

T ′
j(q

2) = − mb

fBm2
Bfa1ma1

em
2
B/M

2
1 em

2
a1
/M2

2 ×

{
− 1

4π2

∫ s′0

0

ds′
∫ s0

sL

dsρTj e
−s/M2

1 e−s
′/M2

2

+ ⟨uū⟩ ×Bp2(M
2
1 )Bp′2(M

2
2 )C

T
j

}
, (16)
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where

A′(q2) =
2A(q2)

mB +ma1

, V ′
0(q

2) =
V0(q

2)

mB +ma1

,

V ′
1(q

2) = V1(q
2)(mB −ma1) , V ′

2(q
2) =

V2(q
2)

mB +ma1

,

T ′
1(q

2) = 2T1(q
2) , T ′

2(q
2) = T2(q

2)(m2
B −m2

a1
) ,

T ′
3(q

2) = T3(q
2) .

s0 and s′0 are the continuum thresholds in the B and a1 meson channels, respectively. sL,

the lower limit of the integration over s, is: m2
b +

m2
b

m2
b−q2

s′.

III. NUMERICAL ANALYSIS

In this section, we present our numerical analysis of the form factors A, Vi, and Tj.

We choose the values of the quark, lepton, and meson masses and also the leptonic decay

constants as: mb = 4.8 GeV [12], mµ = 0.105 GeV, mτ = 1.776 GeV, ma1 = 1.260 GeV,

mB = 5.280 GeV [13], fa1 = (238 ± 10) MeV [14]. For the value of the fB, we shall use

fB = 140 MeV. This value of fB corresponds to the case where O(αs) corrections are not

taken into account (see [15, 16]).

The sum rules for the form factors contain also four auxiliary parameters: Borel mass

squaresM2
1 andM2

2 and continuum thresholds s0 and s
′
0. These are not physical quantities,

so the form factors as physical quantities should be independent of them. The continuum

thresholds of B and a1 mesons, s0 and s′0 respectively, are not completely arbitrary; these

are in correlation with the energy of the first exited state with the same quantum numbers as

the considered interpolating currents. The values of the continuum thresholds calculated

from the two–point QCD sum rules are taken to be s0 = (35 ± 2) GeV2 [17] and s′0 =

(2.55 ± 0.15) GeV2 [14]. We search for the intervals of the Borel mass parameters so that

our results are almost insensitive to their variations. One more condition for the intervals

of these parameters is the fact that the aforementioned intervals must suppress the higher

states, continuum and contributions of the highest-order operators. In other words, the

sum rules for the form factors must converge (for more details, see [18]). As a result, we

get 8 GeV2 ≤M2
1 ≤ 15 GeV2 and 2.5 GeV2 ≤M2

2 ≤ 4 GeV2.

Equation (16) shows the q2 dependence of the form factors in the region where the sum
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rule is valid. To extend these results to the full region, we look for parametrization of the

form factors in such a way that in the validity region of the 3PSR, this parametrization

coincides with the sum rules prediction. We use two following sufficient parametrizations

of the form factors with respect to q2 as:

F (1)(q2) =
1

1− ( q2

m2
B
)

2∑
r=0

br

[
zr + (−1)r

r

3
z4
]
. (17)

where z =

√
t+−q2−

√
t+−t0√

t+−q2+
√
t+−t0

, t+ = (mB +ma1)
2 and t0 = (mB +ma1)(

√
mB − √

ma1)
2 [19],

and also

F (2)(q2) =
f(0)

1− α( q2

m2
B
) + β( q2

m2
B
)
2 . (18)

We evaluated the values of the parameters br (r = 1, ..., 3) of the first and f(0), α, β

of the second fit function for each transition form factor of the B → a1 decay, taking

M2
1 = 10 GeV2 and M2

2 = 3 GeV2. Tables I and II show the values of the br and f(0), α,

β for the form factors.

TABLE I: The values of the br related to F (1)(q2).

Parameter A(1) V
(1)
0 V

(1)
1 V

(1)
2 T

(1)
1 T

(1)
2 T

(1)
3

b0 0.44 0.35 0.28 −0.30 −0.33 −0.21 0.33

b1 0.80 1.77 2.80 −1.79 −0.60 −2.14 1.42

b2 3.89 0.09 15.52 0.94 −2.90 −11.34 −0.04

TABLE II: The values of the f(0), α and β connected to F (2)(q2).

Parameter A(2) V
(2)
0 V

(2)
1 V

(2)
2 T

(2)
1 T

(2)
2 T

(2)
3

f(0) 0.51 0.46 0.52 −0.41 −0.37 −0.37 0.41

α 0.58 0.37 −0.52 0.34 0.58 −0.50 0.44

β −0.39 −0.04 0.38 0.14 −0.40 0.48 −0.10

So far, several authors have calculated the form factors of the B → a1ℓν decay via the

different approaches. For a comparison, the form factor predictions of the other approaches

at q2 = 0 are shown in Table. III. The results of other methods have been rescaled according
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to the form factor definition in Eq. (7). It is useful to present the relations between our

form factors (A, Vi) in Eq. (7) to those used in [2–5]. The relations read

A =
(mB +ma1)

(mB −ma1)
A[2] = −A[3], V0 = −(mB +ma1)

2ma1

V
[2,3]
0 ,

V1 = V
[2]
1 = −(mB +ma1)

(mB −ma1)
V

[3]
1 , V2 = −(mB +ma1)

(mB −ma1)
V

[2]
2 = V

[3]
2 .

Also, the relation between our form factors to those used in [4] and [5] are obtained from the

above equations by replacing A[3] → −A[4], V
[3]
i → −V [4]

i and, A[3] → κA[5], V
[3]
i → κV

[5]
i

respectively, where κ =
√
2 ma1

ga1fa1
.

TABLE III: Transition form factors of the B → a1ℓν at q2 = 0 in various models. The results of

other methods have been rescaled according to the form factor definition in Eq. (7).

Model A(0) V0(0) V1(0) V2(0)

LFQM[2] 0.67 0.34 0.37 −0.29

CQM [3] 0.23 3.11 1.32 −0.55

LCSR[4] 0.48± 0.09 0.77± 0.13 0.60± 0.11 −0.42± 0.08

SR [5] 0.55± 0.08 0.49± 0.11 0.56± 0.07 −0.43± 0.04

This Work 0.51± 0.11 0.46± 0.10 0.52± 0.11 −0.41± 0.09

The errors in Table. III are estimated by the variation of the Borel parameters M2
1 and

M2
2 , the variation of the continuum thresholds s0 and s

′
0, the variation of b quark mass and

leptonic decay constants fB and fa1 . The main uncertainty comes from the thresholds and

the decay constants, which is about ∼ 25% of the central value, while the other uncertainties

are small, constituting a few percent.

The dependence of the form factors, A(1), V
(1)
i , T

(1)
j (q2) and A(2), V

(2)
i , T

(2)
j on q2 ex-

tracted from the fit functions, Eqs. (17) and (18), are given in Figs. (2) and (3), respec-

tively.

In the standard model, the rare semileptonic B → a1ℓ
+ℓ− and B → ρℓ+ℓ− decays are

described via loop transitions, b → d ℓ+ℓ− at quark-level. Both mesons a1 and ρ have the

same quark content, but different masses and parities ,i.e., ρ is a vector (1−) and a1 is a

axial vector (1+). We have calculated the form factor values of the B → ρℓ+ℓ− at q2 = 0 in

the SR model shown in Table. IV. Also, this table contains the results estimated for these

10



FIG. 2: The form factors A(1), V
(1)
i and T

(1)
j on q2.

FIG. 3: The form factors A(2), V
(2)
i and T

(2)
j on q2.

form factors in the frame work of the LCSR. The predicted values by us and the LSCR

model are very close to each other in many cases. If a1 behaves as the scalar partner of the

ρ meson, it is expected that the A(0) for the B → a1 decays is similar to the V (0) for the

B → ρ transitions, for example. The values obtained for A(0) via two the SR and LCSR

models in Table. III are larger than those for V (0) in Table. IV. It appears to us that the

transition form factors of the B → a1 decays are quite different of those for B → ρ.

Now, we would like to evaluate the branching ratio values for the B → a1ℓ
+ℓ− decays.

TABLE IV: The form factor values of the B → ρℓ+ℓ− at q2 = 0.

Mode V (0) A0(0) A1(0) A2(0) T1(0) T2(0) T3(0)

This Work 0.30± 0.09 0.29± 0.08 0.24± 0.06 0.20± 0.07 0.26± 0.07 0.26± 0.07 0.16± 0.05

LCSR[20] 0.32 0.30 0.24 0.22 0.27 0.27 0.18

11



The expressions of the differential decay width dΓ/dq2 for the B → a1νν̄ and B → a1ℓ
+ℓ−

decays can be found in [21, 22]. These expressions contain the Wilson coefficients Ceff
7 ,

Ceff
9 , C10, and also the CKM matrix elements Vtb and Vtd. Considering Ceff

7 = −0.313,

C10 = −4.669, | VtbV ∗
td |= 0.008 [8], and the form factors related to the fit functions, Eqs.

(17) and (18), and after numerical analysis, the branching ratios for the B → a1ℓ
+ℓ−/νν̄

are obtained as presented in Table V. In this table, we show only the values obtained

considering the SD effects contributing to the Wilson coefficient Ceff
9 in Eq. (4) for charged

lepton case.

TABLE V: The branching ratios of the semileptonic B → a1ℓ
+ℓ− decays, considering two groups

of the form factors. 1 and 2 stand for the form factors, F (1) and F (2), respectively.

Mode form factors Value

Br(B → a1νν̄)× 108 1
2

7.41±2.44
7.78±2.32

Br(B → a1e
+e−)× 108 1

2
2.75±0.58
2.90±0.95

Br(B → a1µ
+µ−)× 108 1

2
2.54±0.47
2.70±0.89

Br(B → a1τ
+τ−)× 109 1

2
0.37±0.09
0.33±0.10

In this part, we would like to present the branching ratio values including LD effects via

Ceff
9 . Due to in our calculations q2 < m2

ψ(4040), we introduce some cuts around the narrow

resonances of the J/ψ and ψ′, and study the following three regions for muon:

I : 2mµ ≤
√
q2 ≤ MJ/ψ − 0.20 ,

II : MJ/ψ + 0.04 ≤
√
q2 ≤ Mψ′ − 0.10 ,

III : Mψ′ + 0.02 ≤
√
q2 ≤ mB −ma1 , (19)

and the following two for tau:

I : 2mτ ≤
√
q2 ≤ Mψ′ − 0.02 ,

II : Mψ′ + 0.02 ≤
√
q2 ≤ mB −ma1 . (20)

In Table VI, we present the branching ratios for muon and tau obtained using the regions

shown in Eqs. (19-20), respectively. In our calculations, two groups of the form factors

are considered. Here, we should also stress that the results obtained for the electron are

12



FIG. 4: The differential branching ratios of the semileptonic B → a1 decays on q2 with and

without LD effects.

very close to the results of the muon and for this reason, we only present the branching

ratios for muon in our table. Considering the form factors, F (1) and F (2), the dependency

TABLE VI: The branching ratios of the semileptonic B → a1ℓ
+ℓ− decays including LD effects in

three regions. 1 and 2 stand for the form factors, F (1) and F (2), respectively.

Mode form factors I II III I+II+III

Br(B → a1µ
+µ−)× 108 1

2
2.07±0.68
2.30±0.76

0.27±0.09
0.26±0.09

0.08±0.03
0.07±0.03

2.42±0.80
2.63±0.88

Br(B → a1τ
+τ−)× 109 1

2
undefined
undefined

0.11±0.04
0.10±0.03

0.15±0.05
0.13±0.04

0.26±0.09
0.23±0.07

of the differential branching ratios on q2 with and without LD effects for charged lepton

case is shown in Fig. (4). In this figure, the solid and dash-dotted lines show the results

without and with the LD effects, respectively, using the form factors, F (1). Also the circles

and stars are the same as those lines but considering F (2). In Ref. [9], the interference

pattern of the charm-resonances J/ψ(3370, 4040, 4160, 4415) with the electroweak penguin

operator O9 in the branching fraction of B+ → K+µ+µ− has been investigated (in this

case q2 ≃ 22 GeV2). For this purpose, the charm vacuum polarisation via a standard

dispersion relation from BESII-data on e+e− → hadrons is extracted. In the factorisation

approximation the vacuum polarisation describes the interference fully non-perturbatively.

The observed interference pattern by the LHCb collaboration is opposite in sign and signifi-

cantly enhanced as compared to factorisation approximation. A change of the factorisation

approximation result by a factor of −2.5, which correspond to a 350%-corrections, results

13



FIG. 5: The dependence of the longitudinal lepton polarization asymmetry on q2 with and without

the LD effects.

FIG. 6: The dependence of the forward-backward asymmetry on q2 with and without the LD

effects.

in a reasonable agreement with the data.

Finally, we want to calculate the longitudinal lepton polarization asymmetry and the

forward-backward asymmetry for the considered decays. The expressions of the longitudinal

lepton polarization asymmetry and the forward-backward asymmetry, PL and AFB, are

given in [21, 22]:

The dependence of the longitudinal lepton polarization and the forward-backward asym-

metries for the B → a1ℓ
+ℓ− decays on the transferred momentum square q2 with and

without LD effects are plotted in Figs. (5) and (6), respectively.

The measurement of these quantities in the FCNC transitions are difficult. Among the

large set of inclusive and exclusive FCNC modes, a considerable attention has been put

into B → K∗µ+µ−such as: measurement of the differential branching fraction and forward-
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backward asymmetry for B → K∗ℓ+ℓ− [23], measurements of the angular distributions in

the decays B → K∗µ+µ− [24], differential branching fraction and angular analysis of the

decay B → K∗µ+µ− [25], Also angular distributions in the decay B → K∗ℓ+ℓ− [26, 27].

In Ref. [27], measurements of the BABAR are presented for the FCNC decayes, B →

K∗ℓ+ℓ− including branching fractions, isospin asymmetries, direct CP violation, and lepton

flavor universality for dilepton masses below and above the J/ψ resonance. Furthermore,

BABAR results from an angular analysis in B → K∗ℓ+ℓ− are reported in which both the

K∗ longitudinal polarization and the lepton forward-backward asymmetry are measured for

dilepton masses below and above the J/ψ resonance.

In summary, the transition form factors of the semileptonic B → a1ℓ
+ℓ−/νν̄ decays were

investigated in the 3PSR approach. Considering both the SD and LD effects contributing

to the Wilson coefficient Ceff
9 for charged lepton case, we estimated the branching ratio

values for these decays. Also, for a better analysis, the dependence of the longitudinal

lepton polarization and forward-backward asymmetries of these decays on q2 were plotted.
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