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The structure of the D9(2420[2430]), (J* = 17) mesons via analyzing the semileptonic B. — D{lv
transition is considered in the framework of the three-point QCD sum rules. In this work, we consider the
D?(2420[2430]) axial vectors as conventional cii mesons. Taking into account the gluon condensate
contributions, the relevant form factors are obtained. The obtained results for the form factors are used to

evaluate the decay rate and the branching ratio.
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I. INTRODUCTION

The structure of the even-parity charmed mesons (J* =
17) is not known exactly yet and has been debated in the
quark model. There is some difference between the mea-
sured and predicted masses of them, observed in the labo-
ratories [1-5] and considered in many phenomenological
models [6—11]. Much effort has been dedicated to realize
this unexpected disparity between theory and experiment.
Therefore the study of the processes involving these me-
sons is important for understanding the structure and quark
content of them. Some physicists presume that these dis-
covered states are conventional ciz and ¢5 mesons [12-20].
Among these mesons, we focus on the nonstrange D?
meson. So far the two confirmed D(l) states, with masses
of 2423.4 + 3.2 MeV and 2427 = 26 = 25 MeV, have
been observed [5]. The narrow-width state with lower
mass is known as D9(2420) and the wide-width state
with more mass is identified as D9(2430) [21]. In this
work, we plan to analyze the DY(2420[2430]) axial vectors
as conventional mesons with a |cii) state.

The B, — D*lv [22] and B, — DII/v [23] have been
studied via three-point QCD sum rules (3PSR). The heavy
meson B, with bc quark structure is made of two heavy
quarks with different charge and flavors. It is located
between two heavy meson families, namely, charmonium
¢c and bottomonium bb, so this meson is similar to the
charmonium and bottomonium in the spectroscopy. The
modern predictions for the mass spectra of bc levels were
obtained in the potential models and lattice simulations
[24-28]. But in contrast to charmonium and bottomonium,
B, decays only via weak interaction and possesses a long
lifetime. For this reason the B, transitions are a very
interesting tool to calculate more precise values for the
Cabibbo-Kabayashi-Maskawa (CKM) matrix elements
and to study the CP and T violations that occur in weak
interactions.

In this work, we analyze the semileptonic B, —
DY(2420[2430])/v decays in the 3PSR. To this aim, taking
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into account the gluon condensate corrections as the im-
portant term of the nonperturbative part of the correlation
function, the form factors of the B, — D(l) transition are
obtained within the 3PSR. The form factors of the B, —
DV(2420[2430]) transitions are a function of the trans-
ferred momentum square g°. So, we plot these form factors
and the differential decay branching fraction of these de-
cays with respect to ¢>. Also the branching ratios for these
cases are evaluated. Detection of these channels and their
comparison with the phenomenological models like QCD
sum rules could give useful information about the structure
of the DY meson.

This paper is organized as follow. In Sec. II, we calculate
the form factors for the B, — DY transition in the 3PSR.
Finally, Sec. III is devoted to the numeric results and
discussions.

I1. SUM RULES METHOD

In this section, we study the transition form factors of the
semileptonic B, — D{lv decay by the QCD sum rules
mechanism. To this aim, we consider the D(l) meson as
the |cii) state. The B, — D{lv process is governed by the
tree level b — ulv transition and the ¢ quark is the specta-
tor, at quark level (see Fig. 1). The three-point correlation
function is considered for the evaluation of the transition
form factors in the framework of the 3PSR. The three-point
correlation function is constructed from the vacuum ex-
pectation value of the time ordered product of three cur-
rents as follows:

Cc

FIG. 1. The bare-loop diagram for the B, — D{lv transition.
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where g = (p — p')?, and p and p’ are the momentum of

0
the initial and final meson states, respectively. Jf‘(x) =
¢y,ysu and JB(y) = ¢ysb are the interpolating currents
of the DY and B, mesons. J) = ity, (1 — y5)b is the

current of the weak transition. |
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We can obtain the correlation function of Eq. (1) in two
parts. The phenomenological or physical part is calculated
saturating the correlation by a tower of hadrons with the
same quantum numbers as interpolating currents. The
QCD or theoretical part, on the other sidem is obtained
in terms of the quarks and gluons interacting in the QCD
vacuum. To derive the phenomenological part of the cor-
relation given in Eq. (1), two complete sets of intermediate
states with the same quantum numbers as the currents J D

and Jp_are inserted. This procedure leads to the following
representation of the above-mentioned correlation:

QLTI DY, XDV, ) | I | Bp)XB.(p) | 71 | 0)

(p" = mpe)(p* = mj)

+ higher resonances and continuum states. 2)

The general expression for the hadronic matrix element of
the weak current with definition of the transition form
factors is given by the formula:

(DY(p',e) | iy, (1 — ys)b | B(p))
= (@) epaps™ per'P — ilfo(a*)e]
+ fig) (e p)P, + i) (¥ p)g, ] (3)
where

2fv(q2)

mg + mpy)’
(myg, D’

fo(@®) = folg*)mp_+ mp),

(g =

/ _ fl(qz) (4)
A (‘]2) = m,
fé(qz) — _ f2(q2)

(mg, + mD?)’

and the £y(¢%), fo(¢?), f1(g?), and f,(g?) are the transition
form factors, P, = (p + p'),. g, = (p — p'),» and € is
the four-polarization vector of the DY meson. Also the
following matrix elements are defined in the standard
way in terms of the leptonic decay constants of the DY
and B, mesons as

O 15 | DYP', 8)) = frympe”,
fB‘m%? )

O Jp, [ B(p) =i——=,
my, + m,

where f DY and fp are the leptonic decay constants of D?
and B, mesons, respectively. Using Egs. (3) and (5) in
Eq. (2) and performing a summation over the polarization
of the D) meson, we get the following result for the
physical part:

[
_ I, m%;‘_ Jpompo

(mb + mc) (p/z - sztll)(Pz - m%i()
X [if(/(qZ)s,uVaﬁpaplﬁ + fé)(qZ)g,uV
+ f1@®Pup, + f3(aD)q.p,]
+ excited states. (6)

,,(p?% p% %) =

The coefficients of Lorentz structures i€, ,,gp“ p'B, g s
P,p,, and g, p, in the correlation function II,, will be
chosen in determination of the form factors £y (g%), fo(q?),
f1(g?), and f,(g?), respectively. So the Lorentz structures
in the correlation function can be written down as

H;Lv(pzr p/2: 612) = iHVS,LLva,Bpapl'B + HOg,uV
+ HIP,upV + HZq,upw (7)

where each II; function is defined in terms of the pertur-
bative and nonperturbative parts as

IL,(p% p”, ¢%) = Y (p?, p%, ¢%) + T1°"(p% p, ¢?).
(8)

With the help of the operator product expansion (OPE), in
the deep Euclidean region where p? < (m, + m_.)*> and
p'? < m2, the vacuum expectation value of the expansion
of the correlation function in terms of the local operators, is
written as follows [22,29]:

L, (p% P 4% = (Co)pr + (C3)uXqq) + (Ca)
X (G4 Gy + (C),,
X{qoagT'G“Pq) + (Co) s
X{qlqqlq) + -+, 9

where (C;),,, are the Wilson coefficients, G¢ g 1s the gluon

field strength tensor, and I' and I'” are the matrices appear-
ing in the calculations. The nonperturbative part contains
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FIG. 2. Contribution of condensates with mass dimensions 3 and 5. The quark-quark condensate and quark-gluon condensate are

shown in (a) and (b), (c) for the B, — D(l) transition, respectively.

the quark and gluon condensate diagrams. We consider the
condensate terms of dimension 3, 4, and 5. It is found that
the heavy quark condensate contributions are suppressed
by the inverse of the heavy quark mass and can be safely
omitted. So there are three diagrams with mass dimensions
3 and 5. These diagrams are shown in Fig. 2. Let us
consider the condensate contribution of the quark-quark.
After some calculations for Fig. 2(a), we have

1 m d d
C3)yy = —=TiF(p, k)] + —XT +
( 3)/1.1/ 4 I'[ (P )] 16 r[(apa aka)

1 m?
X + —(m2 — =22
F(p, k)va:l » (mu 2)

92 92 92
X T + + F
r[(apaak“ (0p*)? (aka)z) (P k)]’

(10)

where m} = 0.8 = 0.2 GeV? and F(p, k) is

F(p, k) = (m(l —7s) T %l) m——cl _im Vﬁs),

where k is the momentum of the ¢ quark. The contribution
of this diagram is zero after applying the double Borel
transformation with respect to both variables p? and p’?,
because only one variable appears in the denominator. In
similar way, it can be shown that the condensate contribu-
tions of other diagrams are zero after applying the double
Borel transformation.

In the QCD sum rule method, the OPE is truncated at
some finite order such that Borel transformations play an
important role in this cutting. Usually, the proper regions of
the Borel parameters are adopted by demanding that in the
|

pv" =4N:1o(s, s, ¢* By (my, — m.) — By(m, +m.) — m},

truncated OPE, the condensate term with the highest di-
mension remains a small fraction of the sum of all terms.
These regions keep the convergence of the condensate
expansion under control and guarantee that one does not
introduce a large error neglecting the higher-dimensional
terms. In the numerical analysis section, we explain how
these proper regions are obtained. So we will not consider
the condensates with d = 6 that play a minor role in our
calculations.

Therefore in this case, we consider the two gluon con-
densate diagrams with mass dimension 4 as a important
term of the nonperturbative corrections only, i.e.,

2
I(p2 p ¢%) = TP(p% p™ ¢*) + T (p% p2, )
X <ﬁ G2>. (11)

w

The diagrams for the contribution of the gluon condensates
are depicted in Fig. 3.

Using the double dispersion representation, the bare-
loop contribution is determined

! P (s, 5 )
P = — [[ ’ dsds'
e e -t

+ subtraction terms. (12)

By replacing the propagators with the Dirac-delta func-
tions (Cutkosky rules):

ﬁ — —2imd(k* — m?), (13)

the spectral densities pP'(s, s', ¢*) are found as

Pger = _2NCIO(Sr S/r qz){A(mC + mu) - Al(mb - mc) - 4A1(mb - mc) + Zm%(mb —me— mu) + mc(zmbmu - l/l)},
P =2N 1y(s,s', ¢*){B1(m;, — 3m.) — By(m, + m,) + 2A5(my — m,) + 2A5(m, — m.) — m_},
Py =2N_ Iy(s, 5", ¢*){2A,(my, — m.) — 2A3(m;, — m,) — By(m;, + m_.) + By(m, +m,) + m_}, (14)

where
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FIG. 3. Contribution of two gluon condensates with mass dimension 4 for the B, — D{ transition.

1 1 1

Io(s, 5", ¢*) = ———, Bi=——F—5[2/A—=Aul  By=——[25A" — Auj,
ols. 5 ) 4NV2(s, 5", ¢7) LAG S, qz)[ ’ d 2AG S, qz)[ ' “]
1
A =— G5 D) [(4ss'm? — sA”? — s'A% — u?m?2 + uAA")],
1
Ay = — ————[8ss”m? — 2s5'A” — 65A% — 2us'm} + 65 uAA — u?A"],
A%(s, s, q°)
1
Ay = —————[4ss'um? + 4ss' AN — 3suA” — 3ul?s' — wm? + 2u*AA'],
A(s, s, q%)

and N, = 3 is the color factor. Also A(a, b, ¢) = a® + b* + ¢ — 2ac — 2bc —2ab,u =5+ s — ¢*>, A = s + m? — m3,
and A = §' + m2 — m2.

To obtain the contributions of the gluon condensate diagrams (Fig. 3), the Fock-Schwinger fixed-point gauge x*A{, = 0
is used, where Ay is the gluon field. In the evaluation of such diagrams in Fig. 3, integrals of the following types are

encountered [30]:

I(a. b, ©) d*k 1
a) b c = ’
’ Qm)* [k — m2'[(p + 0> = mpPL(p" + k)* — m3 ]
d*k k
I,(a b, c)= ’ -, (15)
a Qm* [k = m2)[(p + 0> = mpPL(p" + k)* — mg)f
d*k Kk,
I,uV(a’b’C): 472 2 2M 27b 2 27"
Qm)* [k = mZ]’[(p + k> = mp P[(p" + K)* — mg ]
These integrals can be calculated using the Schwinger representation for the Euclidean propagator
1 1 © 24 2
_ daa ! —a(k>+m )' 16
(k> +m?»"  T(a) ,[0 aa e (16)
After the Borel transformation, using
B p(MP)e= " = 8(1/M?* — a), (17)
we obtain
R (_1)u+h+c - , -
ly(a, b, c) = M) (M5)* " Ugla+b+c—4,1—c—Db),
ola, b, c) 16772F(a)r(b)F(c)( 1) ( 2) ola ¢ ¢ )
(18)

fM(a, b,c)=1,(a, b, pu + Ir(a, b, )Pl
IA,u,V(a’ b’ C) = i6(a; b; C)g,uv + iS(a’ b: c)p#pv + i4(a’ b’ C)p,u,plv + IA4(a, b; C)pfupv + iS(a; b; C)p;Lp/V

016012-4



ANALYSIS OF THE B, — DVlv DECAY

PHYSICAL REVIEW D 81, 016012 (2010)

I in Eq. (18) stands for the double Borel transformed form of Eq. (15), in Schwinger representation, where

(_ 1)a+b+c+1

ik(a’ b’ C) = l167721"(a)1"(b)1—*(c) (M%)l7a7h+k(M%)4iaicikU0(a +b+c— 5, 1 —c— b);

R (_1)a+b+c+l

1,(a, b, c)= i16772F(a)F(b)F(c) (M3)~a-b=lim(pZyi=a=c=mY (g + b +c—51—c — b), (19)
N (_1)a+h+c+l

16(61, b? c) = i327T2F(a)F(b)F(C) (M%)3_a_b(M%)3_a_cu0(a + b + Cc — 6, 2 - C — b),

where k =1, 2, m = 3, 4, 5, M? and M3 are the Borel
parameters in the s and s’ channels, respectively, and the
function U (a, b) is defined as

Uy(a, b) = foo dy(y + M% + M%)“yb
0

B,
Xexp| ——— — By — By |
y
where

B_, MY+ miM3 + MasM3(m: + mi — ¢%)],

=— _[m
TS
1
_ 2 2172 202 2
By = m[(mu + m)M7 + M3(mj; + mg)],

m?

MEAE (20)

B,

By performing the double Borel transformations over
the variables p? and p’> on the physical parts of the
correlation function and bare-loop diagrams and also
equating two representations of the correlation function,
the sum rules for the f/(g?) are obtained:

(mb + mc)

2
T g fpompo

1 50 So

X{—— ds’f P (s, s, g

{ 472 [m%#»m,z, sL P ( 1 )

4
X @ 8/Mo=s'/M; iM%M%(ﬂ G2>Q}, 1)

T 6
where i =V, 0, 1, and 2, sy and s() are the continuum
thresholds in pseudoscalar B, and axial vector DY chan-
nels, respectively, and the lower bound integration limit s;,

is

my, /M3 emf)l /M3

filg®) = —

e

o mi+ g —mp — s mis' — miq?)
- (my — ¢*)(mg = s') '
The explicit expressions for C} are presented in the
Appendix.

III. NUMERICAL ANALYSIS

Now, we present our numerical analysis of the form
factors f;(g?) (i=V, 0, 1, 2) via the 3PSR. From the

sum rule expressions of the form factors, it is clear that
the main input parameters entering the expressions are
gluon condensates, an element of the CKM matrix V,,,
leptonic decay constants f_and f’ Do Borel parameters M?

and M3, as well as the continuum thresholds s, and s),. We
choose the values of the gluon condensate, leptonic decay
constants, CKM matrix element, quark and meson masses
as  (2G?) =(0.009 *0.007) GeV*  [31], foo =
(225 + 25) MeV, fp = (350 £ 25) MeV [32], | V,;, |=
(0.00431 £0.00030), m, =(1.5-3.3) MeV, m. =
(1270270)) MeV,  mj;, = (420027°) MeV,  mpo40 =
(2423.4 £3.2) MeV, Mp0(2430) = (2427 = 26 +
25) MeV, and mp = (6276 + 4) MeV [21].

The sum rules for the form factors also contain four
auxiliary parameters: Borel mass squares M7 and M3 and
continuum thresholds s, and sj. These are not physical
quantities, so the form factors as physical quantities should
be independent of them. The parameters s, and s;,, which
are the continuum thresholds of B. and DY mesons, re-
spectively, are determined from the condition that guaran-
tees the sum rules to practically be stable in the allowed
regions for M? and M3. The values of the continuum
thresholds calculated from the two-point QCD sum rules
are taken to be s, = (45-50) GeV? and s{, = (6-8) GeV?
[33-35]. The working regions for M7 and M3 are deter-
mined requiring that not only the contributions of the
higher states and continuum are small, but the contribu-
tions of the operators with higher dimensions are also
small. Both conditions are satisfied in the regions
10 GeV? = M? =25 GeV?  and 8 GeV?=M; =
15 GeV?. The dependence of the form factors on M7} and
M3 for the B.— DY(2420[2430])lv decays is shown in
Fig. 4. This figure shows a good stability of the form factors
with respect to the Borel mass parameters in the working
regions.

For analysis of the form factors of the semileptonic
B. — DY(2420[2430])lv  decays, we consider the
D{(2420[2430]) axial vectors as conventional mesons,
i.e., the |cit) state. Using Egs. (4) and (21), the values of
the form factors at ¢g> = 0 are presented in Table I. It
should be remarked that, the values of the transition form
factors at g*> = 0 for B, — DV(2420)/v decay are the same
as those for the B, — D%(2430)/v. Our calculations show
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FIG. 4. The dependence of the ff-2420‘2430) form factors on M? and M2. The solid, dashed, dash-dotted, and long-dashed lines

correspond to f, fo, fy, and f,, respectively.

the other physical quantities of these decays are nearly the
same.

The sum rules for the form factors are truncated at about
9 GeV?, so to extend our results to the full physical region,
we look for a parametrization of the form factors in such a
way that in the region 0 < ¢* = (mp_— mD?)2 GeV?, this
parametrization coincides with the sum rule predictions.
Our numerical calculations show that the sufficient pa-
rametrization of the form factors with respect to ¢ is

a b (22)

—+
(1—=L) (1-5)

M M

fi(‘]z) =

The values of the parameters a, b, and mg; are given in
Table II. Figure 5 depicts the fit functions of the
F24202430 2y (j = v, 0, 1, 2) form factors for the B, —
DY(2420[2430])/v decays with respect to the transferred
momentum square g>. This figure also contains the form
factors obtained via the 3PSR [see Eq. (21)]. The form
factors and their fit functions coincide well in the interval
0=g?>=9 GeV?

In order to parametrize each form factor to a fit function
of Eq. (22), 50 data were entered. In other words, the values
of f,(g?) for 50 different values of g were determined and
then these determined values were fit to Eq. (22). If we

TABLE I. The value of the form factors for the B.—
D9(2420[2430]) transitions at ¢*> =0, M? =15 GeV?, and
M3 =10 GeV2.

want to find the errors in parameters a, b, and mg; corre-
sponding to the fit function, then we must consider the
errors of 50 entered data which will be complicated due to
the fit function structure. But since f;(0) = a + b, and
knowing that the error in f;(0) is about 25%-30% (see
Table I), therefore the error in a and b is approximately
20%. The same amount of error is expected for my,. We
have considered this amount of error in the calculation of
the B, — D{lv branching ratio decay.

By using the expressions for the form factors, the dif-
ferential decay width dI"/dg? for the process B. — D%lv
(I = e, p) in terms of H, is presented as follows:

dl's(B.— Dilv) _ GilV,, I

PN (m3  m2, g H|?,

dq’ 19273 m3, oy
dly(B.— D{lv) _ GEIV,|* 12,2 .2 2 2
dq’ " 192mm T (s, 0 4°) 1Hol
dl'(B. — DY1v) — dl'+ (B, — Dlv)
dq? dq?
dl'y(B. — DVl
_"_ 0( C 3 1 V)’ (23)
dq

where G is the Fermi constant, and H. and H are defined

TABLE II. Parameters appearing in the fit function for the
form factors of the B. — D{(2420[2430]) transitions at M7 =
15 GeV? and M3 = 10 GeV?>.

fi(g» a b My

f§/2420'2430) (0) —-0.53 +0.13
f(()2420‘2430) (0) 0.24 = 0.07
f§2420'2430) 0) 0.35 = 0.09

;2420,2430) 0) —0.58 = 0.15

FRA0280) (2 —0.35 —-0.18 4.94
f(()2420' 2430 (2 0.20 0.04 6.88
f§2420‘2430) () 0.25 0.10 591

;2420,2430>( %) ~0.37 —0.21 4.82
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FIG. 5. The dependence of the form factors as well as the fit parametrization of the form factors on ¢2. The squares correspond to the
form factors, and the solid lines belong to the fit parametrization of the form factors.

as

)‘1/2(’”2&’ m%?’ )

H.(q*) = (mp_+ mD?)fO(qz) + g,

mp_ + mpo
1
1

2’"1)?\/?[(

where =, O refer to the D? helicities. Note that in the limit of vanishing lepton mass (in our case electron and muon) the
f2(g?) form factor does not contribute to the decay width formula.

A(m%}CJ m2D(l)) qz)

Holg?) = = iy = )oma, + mp o) ~ — 2 ()]
¢ 1
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TABLE III. The branching ratio value of the semileptonic
B, — DY(2420[2430])Iv (I = e, p) decays within the 3PSR.

Mode Br
B.— D?(2420[2430])1V (3.89 £ 1.21) X 107

To calculate the branching ratios of the B, —
DV(2420[2430])lv (I =e, p) decays, we integrate
Eq. (23) over g? in the whole physical region [0 = ¢ =
(mp, — mD(]))2 GeV?], and use the total mean lifetime

75, = (0.46 = 0.07) ps [21]. Our numerical analysis
shows that the contribution of the nonperturbative part
(the gluon condensate diagrams ) is about 9% of the total
and the main contribution comes from the perturbative part
of the form factors. Note that, the branching ratios of these
decays are very close. This is easily understandable as the
only input parameter which differs from the D{(2420) and
D?(2430) mesons is their masses (the decay constants are
taken to be the same). As far as the D9(2420) meson mass
is within the uncertainty interval of the D?(2430) meson
mass and the estimate of the branching fractions is practi-
cally insensitive to the mass uncertainties, the similarity in
the branching fractions is obvious. The value for the
branching ratio of this decay is obtained as presented in
Table III. The function of the differential decay branching
fraction of the B, — DV(2420[2430])[v (I = e, w) decays
with respect to ¢ is shown in Fig. 6.

The errors are estimated by the variation of the Borel
parameters M? and M3, the variation of the continuum
thresholds s, and s;, the leptonic decay constants f and
fpo, and uncertainties in the values of the other input

parameters. The main uncertainty comes from the contin-
uum thresholds and the decay constants, which is about
~25% of the central value, while the other uncertainties
are small, constituting a few percent.

It should be noted that the B, — D%lv (I = e, ) decay
has been considered for the first time in this paper.

At the end of this section, we would like to compare the
value of the branching ratio of this decay with the one of
the closely related processes, such as B, — D*lv (I = e,
) decay. The branching fraction predictions for the B, —
D*ev decay in different approaches are shown in Table TV.
The comparison between two processes explicitly indi-
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FIG. 6. The dependence of the differential decay branching
fraction of the B, — D9(2420[2430]) decays on g¢>.

cates the branching ratio suppression of the B. — DVlv
(I = e, p) decay.

IV. CONCLUSION

In summary, we analyzed the semileptonic B, —
DY(2420[2430])/v decays in the framework of the three-
point QCD sum rules. In this work, the D{(2420) and
DY(2430) axial vectors were assumed as conventional cii
mesons. The related form factors were computed within
the 3PSR. The branching ratios of these decays were also
estimated. Any future experimental measurement on these
form factors as well as decay rates and branching fractions
and their comparison with the obtained results in the
present work can give considerable information about the
structure of these mesons.
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APPENDIX

In this Appendix, the explicit expressions of the coef-
ficients of the gluon condensate entering the sum rules of
the form factors f;(g%) (i = V, 0, 1, 2) are given.

TABLE IV. The branching ratio of the B, — D*ewv decay in different approaches: 3PSR with
gluon condensate corrections [22], 3PSR without gluon corrections [36], light cone sum rules
(LCSR) [37], quark model (QM) [38], and the Bethe-Salpeter equation (BSE) [39].

Mode 3PSR [22]

3PSR [36]

LCSR [37] QM [38] BSE [39]

Br(B, — D*ev) X 107 (2.2 +0.5)

35 3.4 1.8
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c) =

—107,(3,2,2)m,>m.2 + 101,(3,2, 2)m,*m.> + 101,(3,2, 2)m,>m.> + 101(3, 2, 2)m,>m.> + 601,(1, 4, 1)m,>m,
—200,(3,2, V)m,2m, + 101213, 2, 2)m, 2m, — 2004(3, 2, 1)m,2m, + 101,(3,2, )mym .2 + 401,(2, 3, 1)m,m,>
— 104,(3, 2, 1)m,m, 2 + 201,(2, 3, ))m,m,> — 101(3, 2, 2)m.> + 201,(3, 2, 1)m,> + 101,(2, 2, 2)m,>

—201,(2,3, )m,> + 1014(3,2, 1)m.> — 101,(3, 1, 2)m > — 201,(2, 2, 2)m.> — 201,(2, 2, 2)m.> — 101y(3, 1,2)m >
+ 201113, 2, 2)m,3 — 501,(2, 2, 1)my, + 201012, 3, 1Ym,, — 20/1(3, 1, 2)m, — 20042, 2, 1)m,,

+301,(2, 1, 2)my, + 100,(1, 3, 1)my, + 300(2, 2, Dm, + 30i1(3, 1,2)m, + 20113, 2, 1)m,

+ 1011013, 2, 1ym, + 201,(2, 2, Dm, — 300,(2, 1,2)m, + 10143, 1, 1)m, + 201*1(2, 2, 2)m,

+ 20112, 2, 2)m, — 101,(3, 1, D)m, — 201,(2, 1,2)m, — 30,(2, 1, 2)m,.

—2015(3,2,2)m.> — 40f4(3,2, )m.® — 20143, 1,2)m3 + 401°%)(3, 2, 2)m 3 + 2014(2, 2, 2)m,> + 51,(2, 2, )m, 3
— 12014(1, 4, )m,? + 40142, 3, )m,3 + 101012, 2, 2)m,3 — 50(1, 2, 2)m,> — 20/°1(3, 2, 2)m,,?

+ 20013, 1, 2)m, + 5I0MG, 1, Dm, + 515(1, 1, 2)m, + 2005(2, 1, 2)m,. + 40153, 1, Dm, — 101>(1, 3, 1)m,,
— 1510(1,2, )my, — 4004(2, 2, 1)my, + 151212, 2, 1Ym,, — 201212, 2, 2)m, + 20773, 2, 2)m,,

— 401113, 1, 2)my, — 1515(1, 1,2)my, + 1012213, 1, 1)m,, — 151923, 2, 1)my, — 2054(1, 2, 2)m,,

— 40112, 3, Ym, — 1000(2, 3, Vm*my, + 151013, 2, 2)m *my, + 2004(3, 2, 2)m *my, — 1514(2, 2, 2)m *m,,
+510(3,2,2)mSm,2 — 3001, 4, Dm,m,* — 51013, 2, 2)mom,* + 10143, 2, Dmem,* — 100013, 2, 2)m 2 m, 2
+510(3,2, )m3m,2 + 1504(4, 1, Dm3m,? + 2014(2, 2, 2)m.2my, + 1014(1, 3, Dm,2m;, + 207°1(3, 2, 1)m 2m,
—201(1,2, 2)m.2m, — 151(2, 1, 2)m,2m, — 1014(3, 1, 1)m 2m,, + 20143, 1, 2)m 2m,, + 151,(2, 2, 1)m 2my,,

+ 2081012, 3, ym 2my, + 1514(2, 1, 2)m.m,2 + 5543, 1, mom,? — 200013, 1, 2)mm, > — 2014(2, 2, 2)m,.m,>
— 100,(2, 2, mem, 2 + 51923, 2, 2)m m,2.
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ci =

where

—4011"1(2, 3, 1Ym,, + 201223, 2, 2)m;, — 4015(2, 2, 1)m,, — 201,(1,2, 2)m, — 202, 2, 2)m,,

—2015(1,2, 2)m;, — 20,(1, 2, 2)m;, — 101°1(2, 3, 1)m,, — 151,(3,2, 2)m.5 — 451,(3, 2, )m,? — 201,(3, 1, 2)m,>
—200,(3,2, Dm. —451,(4, 1, )m > — 201,(3, 2, 2)m.5 — 51y(3, 1, 2)m.> — 4015(2, 2, 2)m > — 151y(4, 1, 1)m >
- 50,3, 1,2)m.> — 101y(2, 2, 2)m.> — 201,(3, 1, 2)m.> — 2015(3, 2, 2)m.>m,> + 201,(2, 2, 2)m *m,

—2015(2,3, Dm,2my, + 401,(3, 2, D)m.2m, + 2015(3, 1, 2)m2m;, + 2015(2, 2, 2)m 2my, + 51,(3, 2, 2)m *m,,
+2015(3,2, 2)mAmy, + 151,(3,2, 2)m>m,* + 2015(3, 2, 2)m . >m,* — 2014(3, 2, 2)m,>m,> — 51,(3,2, 2)m.>m,>
—501,(2,3, )m2my, — 10113, 2, 2)m 2m,, + 351,(3, 2, 1)m.2my, + 201,(3, 1, 2)m.2my, + 4015(2, 3, 1)m, >
+2005(2,2,2)m,? — 5113, 2,2)m,3 + 401,(2, 3, )m,3 + 201,4(3,2, 1)m, + 101,(2, 3, 1)m,

—301,(1,4, 1)m,> — 401,(2, 2, 2)m.> — 201,(2, 2, 2)m.m,> — 301,(3, 2, \)m.m,> + 901 (1, 4, 1)m.m,?
+12005(1, 4, Dmsm,? + 40153, 1, )m, — 515(2,2, Vm, + 10/°1(2, 2, 2)m, + 201,(2, 1, 2)m,

+ 401113, 2, ym, + 401212, 2, 2)m, + 51,3, 1, 1)m, + 201,(2, 2, 2)m, + 300,(1, 4, 1)m.m,?

+300,(1,4, mom,> — 201,(3,2, Dm,m,2 + 15113, 2, 2)m.m,? — 101,(2, 2, 2)m.m,> — 5123, 2, 2)m,

+ 51,2, 2, Dm, + 401113, 2, 1)m, + 101213, 2, 1)m, — 51033, 2, 2)m, + 401212, 2, 2)m,

+ 20052, 1, 2)m, — 15152, 1, 2)m, + 20/°2(3, 2, 2)m;, — 4015(1, 3, )m,, — 40113, 1,2)m,, + 101,(1, 3, )m,
+1010(1,3, Dmy, — 207213, 2, 1)m,, — 201233, 2, 2)m, — 105,(3, 1, 1)m,.

150,(4, 1, Dm2m, — 401213, 2, 2)m 2m,, — 401,(3, 2, Ym.2my, — 1015(2, 3, Dm,2my, + 40113, 2, 2)m 2m,,
— 601,(4, 1, )m2my, + 4014(2, 3, )m,2m,, + 2015(2, 2, 2)m.2m;, — 201,(3, 1, 2)m.2m,, + 10113, 2, 2)m 3
+601,(4, 1, )m3 — 20153, 1,2)m,? — 151,(4, 1, )m.3 — 51,(3,2, Dm,3 + 10113, 2, 2)m 3 + 51,(3, 1, 2)m, 3
— 51,3, 1,2)m3 + 154(4, 1, hm 3 — 201,(3,2, 1)m.> + 201°1(3, 2, 2)m,* — 201113, 2, 2)m m,,2

+ 50,3, 1, 2)m,m,? — 2015(3, 2, V)mom,* + 2014(2, 2, 2)m.m,> — 101,(2, 2, 2)m.m,?> — 301y(1, 4, 1)m.m,>
+12075(1, 4, Dmem,? + 51013, 2, 2)mem,2 + 201,(3, 2, 1)mom,? = 101,(3,2, Vmem,? + 30551, 4, \m.m,?
+2005(2, 2, 2)m,> — 201,(3,2, 1)m,* + 101,(2, 3, )m,* + 101,(3, 2, )m,> — 12015(1, 4, 1)m,> + 54(2, 2, 1)m,
+ 151093, 1, 2)m, — 51023, 2, 2)m, — 151°13, 2, 1)m, + 40153, 1, Dm, + 51,3, 1, )m,

— 201113, 1, 2)m, + 10£,(3, 1, Dm, + 10112, 2, 2)m, + 201213, 1, 2)m, — 201,(2, 1, 2)m,

+2005(2, 1, 2)m, + 51,(2,2, Dm, + 10212, 2, 2)m, — 151,(2, 1, 2)m, — 15113, 1, 2)m, — 4011 (3, 1, 2)m,,
+ 401113, 1, 2)m, — 200,(2, 1,2)my, + 2012193, 2, Dymy, + 5123, 2, 2)my, + 10042, 2, 1)my, — 20152, 1, 2)m,,
—101,(2,2, )my, — 205,(1, 2, 2)my, + 201,(2, 1, 2)m,, — 40153, 1, 1)m;, — 10£,(1, 3, D)m,, + 201043, 2, 2)m,,

— 4015(2,2, Dmy, + 20112, 2, 2)m,, + 401212, 3, 1)m,, + 101,(3, 1, 2)m 2my, + 2014(3, 2, 2)m,>
+505(3,2,2m5 — 51,(3,2,2)m.5 + 401,(3, 2, m,3 + 401°1(3, 2, 2)m 3 + 201,(3, 1, 2)m,3

+ 51,3, 2, 2)mmy, + 2015(3, 2, 2)m3m,? — 200,(3,2, 2)m3m,? + 51,(3, 2, 2)m>m,* — 51,(3, 2, 2)m.>m,>,

d d’

7Li.j] — (M2)i(M2)
Iy , b, c) = (M7)(M5)/ - ————
(a C) ( 1)( 2) d(M%)l d(M%)]

[(M3) (M3)1,(a, b, 0)]
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