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34722 Istanbul, Turkey
2 Physics Department, Jahrom Higher Education Complex, 74137 Jahrom, Iran
3 Physics Department, Shiraz University, Shiraz 71454, Iran

E-mail: kazizi@dogus.edu.tr, khosravi.reza@gmail.com and falahati@shirazu.ac.ir

Received 21 April 2011
Published 13 July 2011
Online at stacks.iop.org/JPhysG/38/095001

Abstract
Probing the s̄s content of the η and η′ mesons and considering mixing between
these states as well as gluonic contributions, the form factors responsible for
semileptonic Ds → (η, η′)lν transitions are calculated via light-cone QCD
sum rules. Corresponding branching fractions and their ratio for different
mixing angles are also obtained. Our results are in a good consistency with
experimental data as well as predictions of other nonperturbative approaches.

1. Introduction

Based on experimental results, a considerable part of the total decay rate of the Ds meson
is related to its decay to η and η′ mesons. Therefore, the Ds is a proper meson to study the
phenomenology of η and η′ mesons and their structures. Due to charm quark, this meson plays
an essential role in analyzing of the weak and strong interactions as well as exploring new
physics beyond the standard model (SM) which will be probed by the Large Hadron Collider
(LHC). The charmed systems are known for very small CP violations in the SM; hence, any
detection of CP violations in such systems can be considered as a signal for the presence of
new physics (for more information about the Ds meson and its decays see [1]).

In this work, we analyze the semileptonic Ds → (η, η′)lν decays in the framework of
light-cone QCD sum rules (LCSR). The η and η′ mesons are mixing states [2, 3]:

|η〉 = cos ϕ|ηq〉 − sin ϕ|ηs〉,
|η′〉 = sin ϕ|ηq〉 + cos ϕ|ηs〉,

(1)

where ϕ is a single mixing angle. The measured values of ϕ in the the quark flavor (QF)
basis (for more information about this basis see for instance [4–7]) are ϕ = (39.7 ± 0.7)◦ and
(41.5±0.3stat ±0.7syst ±0.6th)

◦ with and without the gluonium content for η′, respectively [8].
The mixing angle ϕ has also been obtained as ϕ = [39.9 ± 2.6(exp) ± 2.3(th)]◦ by recently
measured BR[D(Ds) → η(η′) + l̄ + νl] in the light-front quark model [9].
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In QF basis,

|ηq〉 = 1√
2
(|ūu〉 + |d̄d〉),

|ηs〉 = |s̄s〉.
(2)

Since the Ds meson decays into η and η′ via ηs state, the transition form factors of these decays
in the QF basis are written in terms of the transition form factors of Ds → ηs as

f
Ds→η

i = − sin ϕ × f
Ds→ηs

i , f
Ds→η′
i = cos ϕ × f

Ds→ηs

i . (3)

For the calculation of f
Ds→η(′)
i via the LCSR through f

Ds→ηs

i , information about distribution
amplitudes (DA’s) of the |ηs〉 state as well as corresponding parameters are needed. These
quantities have not been known yet, exactly. However, the same quantities for η meson are
available and investigation of f

Ds→η

i is possible, directly. On the other hand, according to

equation (3), there is a relation between f
Ds→η

i and f
Ds→η′
i :∣∣f Ds→η

i (q2)
∣∣∣∣f Ds→η′

i (q2)
∣∣ = tan ϕ, (4)

so, our strategy will be as follows. First, we will calculate the form factors, f
Ds→η

i via the
LCSR, then using equation (4) and the values of the mixing angle ϕ, we will evaluate the
transition form factors of Ds → η′lν.

This paper is organized as follows. In the next section, we obtain the LCSR for the
transition form factors responsible for Ds → ηlν decay. Section 3 is devoted to the numerical
analysis of the form factors and calculation of branching ratios of the Ds → (η, η′)lν decays.
We also compare the obtained results with the existing predictions of the other nonperturbative
approaches as well as experimental data.

2. LCSR for Ds → η transition form factors

To calculate the transition form factors of Ds → η in the LCSR method, we consider the
following correlation function:

�μ(p, q) = i
∫

d4x eiqx〈η(p)|T {s̄(x)γμ(1 − γ5)c(x)c̄(0)i(1 − γ5)s(0)}|0〉, (5)

where we will use the DA’s of the η meson. The main reason for choosing the Chiral
current, c̄i(1 − γ5)s instead of the usual pseudoscalar (PS), c̄iγ5s is to eliminate effectively
the contribution of the twist-3 wavefunctions which are poorly known and cause the main
uncertainties to the sum rules. This current provides results with less uncertainties (see also
[10–14]). Here, we should stress that the Chiral current may enhance the next-to-leading order
(NLO) twist-2 contribution and to get more exact results, one should use the DA’s of the η

mesons up to NLO which are not available yet.
According to the general philosophy of the QCD sum rules and its extension, light-cone

sum rules, we should calculate the above correlation function in two different ways. In
phenomenological or physical representation, it is calculated in terms of hadronic parameters.
In QCD side, it is obtained in terms of DA’s and QCD degrees of freedom. The LCSR for the
physical quantities like form factors are acquired equating coefficient of the sufficient structures
from both representations of the same correlation function through dispersion relation and
applying Borel transformation and continuum subtraction to suppress the contributions of the
higher states and continuum.
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To obtain the phenomenological representation of the correlation function, we insert a
complete set of Ds states between the currents. Isolating the pole term of the lowest PS Ds

meson, we get

�μ(p, q) = 〈η(p)|s̄γμ(1 − γ5)c|Ds(p + q)〉〈Ds(p + q)|c̄i(1 − γ5)s|0〉
m2

Ds
− (p + q)2

+ · · · , (6)

where · · · stands for the contributions of the higher states and continuum. The matrix element,
〈Ds |c̄i(1 − γ5)s|0〉 is defined as

〈Ds |c̄i(1 − γ5)s|0〉 = m2
Ds

fDs

mc + ms

, (7)

where fDs
is leptonic decay constant of Ds meson. The transition matrix element,

〈η(p)|s̄γμ(1 − γ5)c|Ds(p + q)〉 can be parameterized via Lorentz invariance and parity
considerations as [11, 12]

〈η(p)|s̄γμ(1 − γ5)c|Ds(p + q)〉 = 2f Ds→η
+ (q2)pμ +

(
f Ds→η

+ (q2) + f
Ds→η
− (q2)

)
qμ, (8)

where f
Ds→η
± (q2) are transition-form factors responsible for Ds → η decay. Using

equations (7) and (8) in equation (6), we obtain

�μ(p, q) = �1(q
2, (p + q)2)pμ + �2(q

2, (p + q)2)qμ, (9)

where,

�1 = 2f
Ds→η
+ (q2)m2

Ds
fDs

(mc + ms)
(
m2

Ds
− (p + q)2

) +
∫ ∞

s0

ds
ρh

1 (s)

s − (p + q)2
+ subtractions,

�2 =
(
f

Ds→η
+ (q2) + f

Ds→η
− (q2)

)
m2

Ds
fDs

(mc + ms)
(
m2

Ds
− (p + q)2

) +
∫ ∞

s0

ds
ρh

2 (s)

s − (p + q)2
+ subtractions,

(10)

where ρh
1,2 show the spectral densities of the higher resonances and the continuum in hadronic

representation. These spectral densities are approximated by evoking the quark–hadron duality
assumption,

ρh
1,2(s) = ρ

QCD
1,2 (s)θ(s − s0), (11)

where, ρ
QCD
1,2 (s) = 1

π
Im �QCD(s) are spectral densities in QCD side and s0 is continuum

threshold in the Ds channel.
The correlation function in QCD side, �QCD(s) is calculated by expanding the T product

of the currents in (5) in terms of the DA’s of the η meson with increasing twist in the deep
Euclidean region, where (p + q)2 	 0. After contracting out the c quark pair, we obtain

�μ(p, q) = i
∫

d4x eiqx〈η|s̄γμ(1 − γ5)Sc(x)(1 − γ5)s(0)|0〉, (12)

where, Sc(x) is the full propagator of c quark.
The light-cone expansion of the quark propagator in the external gluon field is made

in [15]. The propagator receives contributions from higher Fock states proportional to the
condensates of the operators q̄Gq, q̄GGq, and q̄qq̄q. In this paper, we neglect contributions
with two gluons as well as four quark operators due to the fact that their contributions are
small [16]. In this approximation, the Sc(x) is given as

Sc(x) =
∫

d4k

(2π)4
e−ikx 
k + mc

k2 − m2
c

− igs

∫
d4k

(2π)4
e−ikx

×
∫ 1

0
du

[
1

2

k/ + mc(
m2

c − k2
)2 Gμν(ux)σμν +

1

m2
c − k2

uxμGμν(ux)γν

]
, (13)

3
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where Gμν is the gluonic field strength tensor and gs is the strong coupling constant. We can
rewrite equation (12) as

�μ(p, q) = i

4

∫
d4x eiqx[Tr γμ(1 − γ5)Sc(x)(1 − γ5)�i]〈η|s̄�is|0〉, (14)

where �i is the full set of the Dirac matrices, �i = (I, γ5, γα, γαγ5, σαβ). As is clear from
equation (14), to proceed to calculate the theoretical side of the correlation function, we need
to know the matrix elements of the nonlocal operators between vacuum and η meson states.
Up to twist-4, the η meson DA’s are defined as [17]

〈η(p)|q̄γμγ5q|0〉 = −ifηpμ

∫ 1

0
du e−iupx

[
ϕη(u) +

1

16
m2

ηx
2A(u)

]

− i

2
fηm

2
η

xμ

px

∫ 1

0
du e−iupxB(u), (15)

〈η(p)|q̄(x)γμγ5gsGαβ(vx)q(0)|0〉 = fηm
2
η

[
pβ

(
gαμ − xαpμ

px

)
− pα

(
gβμ − xβpμ

px

)]

×
∫

Dαiϕ⊥(αi) e−ipx(α1+uα3) + fηm
2
η

pμ

px
(pαxβ − pβxα)

×
∫

Dαiϕ‖(αi) e−ipx(α1+uα3), (16)

〈η(p)|q̄(x)gsG̃αβ(vx)γμq(0)|0〉 = ifηm
2
η

[
pβ

(
gαμ − xαpμ

px

)
− pα

(
gβμ − xβpμ

px

)]

×
∫

Dαiϕ̃⊥(αi) e−ipx(α1+uα3) + ifηm
2
η

pμ

px
(pαxβ − pβxα)

×
∫

Dαiϕ̃‖(αi) e−ipx(α1+uα3), (17)

where, G̃μν = 1
2εμνσλG

σλ and Dαi = dα1 dα2 dα3δ(1−α1 −α2 −α3). Since we use the chiral
current, the twist-3 wavefunctions do not give any contribution. In equations (15)–(17), ϕη(u)

is the leading twist-2, A(u) and part of B(u) are two particle twist-4, ϕ‖(αi), ϕ⊥(αi), ϕ̃‖(αi),

and ϕ̃⊥(αi) are three particle twist-4 DA’s. Here we should stress that using the identity

γμσαβ = i(gμαγβ − gμβγα) + εμαβργ
ργ5, (18)

and due to the parity invariance of strong interactions, the matrix element,

〈η(p)|s̄γμGαβ(ux)σαβs|0〉 = 0, (19)

and has no contribution. For extracting the QCD or theoretical side of the correlation function,
we insert the expression of the charm quark full propagator as well as the DA’s of the η meson
into equation (14) and carry out the Fourier transformation.

Now, we proceed to get the LCSR for our form factors equating the coefficients of
the corresponding pμ and qμ structures from both phenomenological and QCD sides of the
correlation function and applying Borel transform with respect to the variable (p + q)2 in
order to suppress the contributions of the higher states and continuum as well as eliminate
the subtraction terms. As a result, the following sum rules for the form factors f

Ds→η
+ and

f
Ds→η
+ + f

Ds→η
− are obtained:

4
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f Ds→η
+ (q2) = m2

cm
2
ηfη

2m2
Ds

fDs

e
m2

Ds

M2

{ ∫ 1

δ

du

u

(
2ϕη(u)

m2
η

+
3A(u)

4uM2
− m2

cA(u)

2u2M4

)
e

−s(u)

M2

+ 2
∫ 1

δ

du

∫ u

0
dt

B(u)

tM2
e

−s(u)

M2 −
∫ 1

δ

du

∫
Dαi

× 8ϕ⊥(αi) + 2ϕ‖(αi) − 8ϕ̃⊥(αi) − 2ϕ̃‖(αi)

k2M2
e

−s(k)

M2 + 4m2
η

∫ 1

δ

du

∫
Dαi

∫ k

0
dt

× ϕ⊥(αi) + ϕ‖(αi) − 2ϕ̃⊥(αi) − 2ϕ̃‖(αi)

t2M4
e

−s(t)

M2

}
, (20)

f Ds→η
+ (q2) + f

Ds→η
− (q2) = m2

cm
2
ηfη

m2
Ds

fDs

e
m2

Ds

M2

{
2
∫ 1

δ

du

∫ u

0
dt

B(u)

t2M2
e

−s(t)

M2 − 4m2
η

∫ 1

δ

du

∫
Dαi

×
∫ k

0
dt

2ϕ⊥(αi) + 2ϕ‖(αi) − ϕ̃⊥(αi) − ϕ̃‖(αi)

t3M4
e

−s(t)

M2

}
, (21)

where, M2 is the Borel parameter and

s(x) = m2
c − q2x̄ + m2

ηxx̄

x
,

x̄ = 1 − x,

k = α1 + uα3,

δ = 1

2m2
η

[(
m2

η + q2 − s0
)

+
√(

s0 − m2
η − q2

)2 − 4m2
η

(
q2 − m2

c

)]
.

(22)

3. Numerical analysis

In this section, we numerical analyze the form factors, f Ds→(η,η′)
± (q2), and calculate branching

fractions of Ds → (η, η′)lν decays and their ratio. We also compare the results of the
considered observables with predictions of the other nonperturbative approaches as well as
existing experimental data. As we mentioned before, using equation (4), the transition form
factors of Ds → η′lν decay are calculated by the help of the transition form factors of
Ds → ηlν decay easily. Hence, we will discuss only the f

Ds→η
± (q2) form factors. From the

LCSR for these form factors, it follows that the main input parameters are the DA’s of the η

meson. The explicit expressions of the wavefunctions, ϕη(u), A(u), B(u) and ϕ‖(αi), ϕ⊥(αi),
ϕ̃‖(αi), and ϕ̃⊥(αi) as well as related parameters are given as [17]

ϕη(u) = 6uū
(
1 + a

η

2C
3
2

2 (2u − 1)
)
,

ϕ̃‖(αi) = 120α1α2α3(v00 + v10(3α3 − 1)),

ϕ‖(αi) = 120α1α2α3(a10(α2 − α1)),

ϕ̃⊥(αi)= − 30α2
3

[
h00(1 − α3) + h01(α3(1 − α3)− 6α2α1) + h10

(
α3(1 − α3)− 3

2

(
α2

1 + α2
2

))]
,

ϕ⊥(αi) = 30α2
3(α1 − α2)

[
h00 + h01α3 + 1

2h10(5α3 − 3)
]
,

B(u) = gη(u) − ϕη(u),

gη(u) = g0C
1
2

0 (2u − 1) + g2C
1
2

2 (2u − 1) + g4C
1
2

4 (2u − 1),

5
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A(u) = 6uū
[

16
15 + 24

35a
η

2 + 20η3 + 20
9 η4 +

(− 1
15 + 1

16 − 7
27η3w3 − 10

27η4
)
C

3
2

2 (2u − 1)

+
(− 11

210a
η

2 − 4
135η3w3

)
C

3
2

4 (2u − 1)
]

+
(− 18

5 a
η

2 + 21η4w4
)[

2u3(10 − 15u + 6u2) ln u

+ 2ū3(10 − 15ū + 6ū2) ln ū + uū(2 + 13uū)
]
, (23)

where Ck
n(x) are the Gegenbauer polynomials:

h00 = v00 = − 1
3η4,

a10 = 21
8 η4w4 − 9

20a
η

2 ,

v10 = 21
8 η4w4,

h01 = 7
4η4w4 − 3

20a
η

2 ,

h10 = 7
4η4w4 + 3

20a
η

2 ,

g0 = 1,

g2 = 1 + 18
7 a

η

2 + 60η3 + 20
3 η4,

g4 = − 9
28a

η

2 − 6η3w3.

(24)

The constants in equations (23) and (24) were calculated at the renormalization scale
μ = 1 GeV2 using QCD sum rules and are given as a

η

2 = 0.2, η3 = 0.013, η4 = 0.5,
w3 = −3, and w4 = 0.2.

The values of the other input parameters appearing in sum rules for form factors are:
quark masses at the scale of about 1 GeV ms = 0.14 GeV, mc = 1.3 GeV [18], meson masses
mη = 0.5478 GeV, mη′ = 0.9578 GeV, mDs

= 1.9685 GeV, Vcs = 1.023 ± 0.036 [19] and
fDs

= (0.274 ± 0.013 ± 0.007) GeV [20].
The sum rules for form factors also contain two auxiliary parameters, s0 and M2. The

continuum threshold is not totally arbitrary but it depends on the energy of the first excited
state. We choose, s0 = (6.5 ± 0.5) GeV2 (see also [21]). Now, we are looking for a working
region for M2, where according to sum rules philosophy, our numerical results be stable for a
given continuum threshold s0. The working region for the Borel mass parameter is determined
requiring that not only contributions of the higher states and continuum effectively suppress,
but also contributions of the DA’s with higher twists are small. Our numerical analysis shows
that the suitable region is 2.5 GeV2 � M2 � 3.5 GeV2. The dependence of the form factors
f

Ds→η
+ and f

Ds→η
− on M2 are shown in figure 1. This figure shows that the form factors weakly

depend on the Borel mass parameter in its working region.
Now, we proceed to find the q2 dependence of the form factors. It should be stressed that

in the region, q2 � 1.4 GeV2, the applicability of the LCSR is problematic. In order to extend
our results to the whole physical region, we look for a parametrization of the form factors
such that in the region, 0 � q2 � 1.4 GeV2, the results obtained from the above-mentioned
parametrization coincide well with the light-cone QCD sum rules predictions. The most
simple parametrization of the q2 dependence of the form factors is expressed in terms of three
parameters in the following form:

f±(q2) = f±(0)

1 − αq̂ + βq̂2
, (25)

where, q̂ = q2/m2
Ds

. The values of the parameters, f
Ds→η
± (0), α and β are given in table 1.

This table also contains predictions of the light-front quark model (LFQM) for f
Ds→η
+ (0) for

two sets (for details see [23]). The errors presented in this table are due to variation of the

6
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2.6 2.8 3.0 3.2 3.4
0.40

0.42

0.44

0.46

0.48

0.50

M2

f
M
2

2.6 2.8 3.0 3.2 3.4
0.50

0.48

0.46

0.44

0.42

0.40

M2

f
M
2

Figure 1. The dependence of the form factors on M2 at q2 = 0. The dashed, solid, and dashed–
dotted lines correspond to the s0 = 5.5 GeV2, s0 = 6 GeV2, and s0 = 6.5 GeV2, respectively.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

q2

f
q
2

0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

q2

f
q
2

Figure 2. The dependence of the form factors of Ds → η on q2. The circle points correspond to
the values obtained directly from sum rules and the solid lines belong to the fit parametrization of
the form factors.

Table 1. Parameters appearing in the fit function for form factors of Ds → η in two approaches.

Model f
Ds→η
− (0) α β

This work (LCSR) −0.44 ± 0.13 2.05 ± 0.65 1.08 ± 0.35

f
Ds→η

+ (0) α β

This work (LCSR) 0.45 ± 0.14 1.96 ± 0.63 1.12 ± 0.36
LFQM(I) [23] 0.50 1.17 0.34
LFQM(II) [23] 0.48 1.11 0.25

continuum threshold s0, variation of the Borel parameter M2, and uncertainties coming from
the DA’s and other input parameters.

The dependence of the form factors, f+(q
2) and f−(q2) for Ds → η on q2 extracted

from the fit parametrization are shown in figure 2. This figure also contains the form factors
obtained directly from our sum rules in the reliable region. We see that, the aforementioned
fit parametrization describe well our form factors. The values of f

Ds→(η,η′)
+ (q2) form factors

at q2 = 0 extracted from fit parametrization and using equation (4) are shown in table 2. Note
that for massless leptons, the form factors, f

Ds→(η,η′)
− (q2), do not contribute to the decay rate

formula, so we present only the f
Ds→(η,η′)
+ (q2) in this table. For comparison, the predictions

7
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Table 2. The f
Ds→(η,η′)
+ (q2) form factors at q2 = 0 in different approaches: this work

(LCSR), three-point QCD sum rules (3PSR) and LFQM. Our results for f
Ds→η′
+ correspond

to ϕ = 39.7◦(41.5◦).

Form factor This work (LCSR) 3PSR [22] LFQM(I) [23] LFQM(II) [23]

f
Ds→η

+ (0) 0.45 ± 0.14 0.50 ± 0.04 0.50 0.48

f
Ds→η′

+ (0) 0.55 ± 0.18(0.51 ± 0.16) – 0.62 0.60

Table 3. The branching ratios in different models and experiment. Our values correspond to
39.7◦(41.5◦).

LFQM(I) LFQM(II)
Mode This work 3PSP [22] [23] [23] EXP [19]

Br(Ds → ηlν) × 102 3.15 ± 0.97 2.3 ± 0.4 2.42 2.25 2.9 ± 0.6
Br(Ds → η′lν) × 102 0.97 ± 0.38(0.84 ± 0.34) 1.0 ± 0.2 0.95 0.91 1.02 ± 0.33

Table 4. The RDs with respect to mixing angle, ϕ for different models and experimental value.

Model Angle (ϕ◦) RDs

This work (LCSR) 39.7◦(41.5◦) 0.32 ± 0.02(0.27 ± 0.01)

3PSR [22] 40◦ 0.44 ± 0.01
LFQM(I) [23] 39◦ 0.39
LFQM(II) [23] 39◦ 0.41
EXP [19] – 0.35 ± 0.12

of the other approaches are also presented in this table. From this table, we see a good
consistency among the results predicted by different approaches.

Now, we would like to evaluate the branching ratios for the considered decays. Using the
parametrization of the transition matrix elements in terms of form factors, in massless lepton
case, we get

d�

dq2
(Ds → (η, η′)lνl) = G2

F |Vcs |2
192π3m3

Ds

[(
m2

Ds
+ m2

η(′) − q2
)2 − 4m2

Ds
m2

(η,η′)
]3/2∣∣f Ds→η(′)

+ (q2)
∣∣2

,

(26)

where GF is the Fermi constant. Integrating equation (26) over q2 in the whole physical region
and using the total mean lifetime, τDs

= (0.5 ± 0.007)ps [19], the branching ratios of the
Ds → (η, η′)lν decays are obtained as presented in table 3.

This table also includes a comparison of our results and predictions of the other
nonperturbative approaches including the LFQM and 3PSR and experimental values [19].
From this table, we see a good consistency between our results and predictions of the different
approaches especially experimental data.

At the end of this section, we would like to compare also the ratio: RDs
= Br(Ds→η′lν)

Br(Ds→ηlν)

in table 4 for different approaches as well as experimental value. This table also depicts a
good consistency among the values, specially between our prediction with ϕ = 39.7◦ and
experimental value. This can be considered as a good test for correctness of the considered
internal structure for the Ds meson as well as the mixing angle between η and η′ states.
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